309 lines
9.2 KiB
TypeScript
309 lines
9.2 KiB
TypeScript
import type { ChatMessage, APIResponse } from "@/types";
|
|
|
|
export interface OllamaCloudConfig {
|
|
apiKey?: string;
|
|
endpoint?: string;
|
|
}
|
|
|
|
const BASE_PATH = "/tools/promptarch";
|
|
const LOCAL_MODELS_URL = `${BASE_PATH}/api/ollama/models`;
|
|
const LOCAL_CHAT_URL = `${BASE_PATH}/api/ollama/chat`;
|
|
const DEFAULT_MODELS = [
|
|
"gpt-oss:120b",
|
|
"llama3.1:latest",
|
|
"llama3.1:70b",
|
|
"llama3.1:8b",
|
|
"llama3.1:instruct",
|
|
"gemma3:12b",
|
|
"gemma3:27b",
|
|
"gemma3:4b",
|
|
"gemma3:7b",
|
|
"deepseek-r1:70b",
|
|
"deepseek-r1:32b",
|
|
"deepseek-r1:14b",
|
|
"deepseek-r1:8b",
|
|
"deepseek-r1:1.5b",
|
|
"qwen3:72b",
|
|
"qwen3:32b",
|
|
"qwen3:14b",
|
|
"qwen3:7b",
|
|
"qwen3:4b",
|
|
"mistral:7b",
|
|
"mistral:instruct",
|
|
"codellama:34b",
|
|
"codellama:13b",
|
|
"codellama:7b",
|
|
"codellama:instruct",
|
|
"phi3:14b",
|
|
"phi3:3.8b",
|
|
"phi3:mini",
|
|
"gemma2:27b",
|
|
"gemma2:9b",
|
|
"yi:34b",
|
|
"yi:9b",
|
|
];
|
|
|
|
export class OllamaCloudService {
|
|
private config: OllamaCloudConfig;
|
|
private availableModels: string[] = [];
|
|
|
|
constructor(config: OllamaCloudConfig = {}) {
|
|
this.config = {
|
|
apiKey: config.apiKey || process.env.OLLAMA_API_KEY,
|
|
endpoint: config.endpoint,
|
|
};
|
|
}
|
|
|
|
hasAuth(): boolean {
|
|
return !!this.config.apiKey;
|
|
}
|
|
|
|
private ensureApiKey(): string {
|
|
if (this.config.apiKey) {
|
|
return this.config.apiKey;
|
|
}
|
|
throw new Error("API key is required. Please configure your Ollama API key in settings.");
|
|
}
|
|
|
|
private getHeaders(additional: Record<string, string> = {}) {
|
|
const headers: Record<string, string> = {
|
|
...additional,
|
|
"x-ollama-api-key": this.ensureApiKey(),
|
|
};
|
|
|
|
if (this.config.endpoint) {
|
|
headers["x-ollama-endpoint"] = this.config.endpoint;
|
|
}
|
|
|
|
return headers;
|
|
}
|
|
|
|
private async parseJsonResponse(response: Response): Promise<any> {
|
|
const text = await response.text();
|
|
if (!text) return null;
|
|
return JSON.parse(text);
|
|
}
|
|
|
|
async chatCompletion(
|
|
messages: ChatMessage[],
|
|
model: string = "gpt-oss:120b",
|
|
stream: boolean = false
|
|
): Promise<APIResponse<string>> {
|
|
try {
|
|
const response = await fetch(LOCAL_CHAT_URL, {
|
|
method: "POST",
|
|
headers: this.getHeaders({ "Content-Type": "application/json" }),
|
|
body: JSON.stringify({
|
|
model,
|
|
messages,
|
|
stream,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
const errorBody = await response.text();
|
|
throw new Error(
|
|
`Chat completion failed (${response.status}): ${response.statusText} - ${errorBody}`
|
|
);
|
|
}
|
|
|
|
const data = await this.parseJsonResponse(response);
|
|
if (data?.message?.content) {
|
|
return { success: true, data: data.message.content };
|
|
}
|
|
|
|
if (data?.choices?.[0]?.message?.content) {
|
|
return { success: true, data: data.choices[0].message.content };
|
|
}
|
|
|
|
return { success: false, error: "Unexpected response format" };
|
|
} catch (error) {
|
|
console.error("[Ollama] Chat completion error:", error);
|
|
return {
|
|
success: false,
|
|
error: error instanceof Error ? error.message : "Chat completion failed",
|
|
};
|
|
}
|
|
}
|
|
|
|
async listModels(): Promise<APIResponse<string[]>> {
|
|
try {
|
|
const response = await fetch(LOCAL_MODELS_URL, {
|
|
headers: this.getHeaders(),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
const errorBody = await response.text();
|
|
throw new Error(`List models failed: ${response.statusText} - ${errorBody}`);
|
|
}
|
|
|
|
const data = await this.parseJsonResponse(response);
|
|
const models: string[] = Array.isArray(data?.models) ? data.models : [];
|
|
|
|
if (models.length === 0) {
|
|
this.availableModels = DEFAULT_MODELS;
|
|
return { success: true, data: DEFAULT_MODELS };
|
|
}
|
|
|
|
this.availableModels = models;
|
|
return { success: true, data: models };
|
|
} catch (error) {
|
|
console.error("[Ollama] listModels error:", error);
|
|
if (DEFAULT_MODELS.length > 0) {
|
|
this.availableModels = DEFAULT_MODELS;
|
|
return { success: true, data: DEFAULT_MODELS };
|
|
}
|
|
return {
|
|
success: false,
|
|
error: error instanceof Error ? error.message : "Failed to list models",
|
|
};
|
|
}
|
|
}
|
|
|
|
getAvailableModels(): string[] {
|
|
return this.availableModels.length > 0 ? this.availableModels : DEFAULT_MODELS;
|
|
}
|
|
|
|
async enhancePrompt(prompt: string, model?: string): Promise<APIResponse<string>> {
|
|
const systemMessage: ChatMessage = {
|
|
role: "system",
|
|
content: `You are an expert prompt engineer. Your task is to enhance user prompts to make them more precise, actionable, and effective for AI coding agents.
|
|
|
|
Apply these principles:
|
|
1. Add specific context about project and requirements
|
|
2. Clarify constraints and preferences
|
|
3. Define expected output format clearly
|
|
4. Include edge cases and error handling requirements
|
|
5. Specify testing and validation criteria
|
|
|
|
Return ONLY the enhanced prompt, no explanations or extra text.`,
|
|
};
|
|
|
|
const userMessage: ChatMessage = {
|
|
role: "user",
|
|
content: `Enhance this prompt for an AI coding agent:\n\n${prompt}`,
|
|
};
|
|
|
|
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
|
}
|
|
|
|
async generatePRD(idea: string, model?: string): Promise<APIResponse<string>> {
|
|
const systemMessage: ChatMessage = {
|
|
role: "system",
|
|
content: `You are an expert product manager and technical architect. Generate a comprehensive Product Requirements Document (PRD) based on user's idea.
|
|
|
|
Structure your PRD with these sections:
|
|
1. Overview & Objectives
|
|
2. User Personas & Use Cases
|
|
3. Functional Requirements (prioritized)
|
|
4. Non-functional Requirements
|
|
5. Technical Architecture Recommendations
|
|
6. Success Metrics & KPIs
|
|
|
|
Use clear, specific language suitable for development teams.`,
|
|
};
|
|
|
|
const userMessage: ChatMessage = {
|
|
role: "user",
|
|
content: `Generate a PRD for this idea:\n\n${idea}`,
|
|
};
|
|
|
|
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
|
}
|
|
|
|
async generateActionPlan(prd: string, model?: string): Promise<APIResponse<string>> {
|
|
const systemMessage: ChatMessage = {
|
|
role: "system",
|
|
content: `You are an expert technical lead and project manager. Generate a detailed action plan based on PRD.
|
|
|
|
Structure of action plan with:
|
|
1. Task breakdown with priorities (High/Medium/Low)
|
|
2. Dependencies between tasks
|
|
3. Estimated effort for each task
|
|
4. Recommended frameworks and technologies
|
|
5. Architecture guidelines and best practices
|
|
|
|
Include specific recommendations for:
|
|
- Frontend frameworks
|
|
- Backend architecture
|
|
- Database choices
|
|
- Authentication/authorization
|
|
- Deployment strategy`,
|
|
};
|
|
|
|
const userMessage: ChatMessage = {
|
|
role: "user",
|
|
content: `Generate an action plan based on this PRD:\n\n${prd}`,
|
|
};
|
|
|
|
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
|
}
|
|
|
|
async generateUXDesignerPrompt(appDescription: string, model?: string): Promise<APIResponse<string>> {
|
|
const systemMessage: ChatMessage = {
|
|
role: "system",
|
|
content: `You are a world-class UX/UI designer with deep expertise in human-centered design principles, user research, interaction design, visual design systems, and modern design tools (Figma, Sketch, Adobe XD).
|
|
|
|
Your task is to create an exceptional, detailed prompt for generating best possible UX design for a given app description.
|
|
|
|
Generate a comprehensive UX design prompt that includes:
|
|
|
|
1. USER RESEARCH & PERSONAS
|
|
- Primary target users and their motivations
|
|
- User pain points and needs
|
|
- User journey maps
|
|
- Persona archetypes with demographics and goals
|
|
|
|
2. INFORMATION ARCHITECTURE
|
|
- Content hierarchy and organization
|
|
- Navigation structure and patterns
|
|
- User flows and key pathways
|
|
- Site map or app structure
|
|
|
|
3. VISUAL DESIGN SYSTEM
|
|
- Color palette recommendations (primary, secondary, accent, neutral)
|
|
- Typography hierarchy and font pairings
|
|
- Component library approach
|
|
- Spacing, sizing, and layout grids
|
|
- Iconography style and set
|
|
|
|
4. INTERACTION DESIGN
|
|
- Micro-interactions and animations
|
|
- Gesture patterns for touch interfaces
|
|
- Loading states and empty states
|
|
- Error handling and feedback mechanisms
|
|
- Accessibility considerations (WCAG compliance)
|
|
|
|
5. KEY SCREENS & COMPONENTS
|
|
- Core screens that need detailed design
|
|
- Critical components (buttons, forms, cards, navigation)
|
|
- Data visualization needs
|
|
- Responsive design requirements (mobile, tablet, desktop)
|
|
|
|
6. DESIGN DELIVERABLES
|
|
- Wireframes vs. high-fidelity mockups
|
|
- Design system documentation needs
|
|
- Prototyping requirements
|
|
- Handoff specifications for developers
|
|
|
|
7. COMPETITIVE INSIGHTS
|
|
- Design patterns from successful apps in this category
|
|
- Opportunities to differentiate
|
|
- Modern design trends to consider
|
|
|
|
The output should be a detailed, actionable prompt that a designer or AI image generator can use to create world-class UX designs.
|
|
|
|
Make's prompt specific, inspiring, and comprehensive. Use professional UX terminology.`,
|
|
};
|
|
|
|
const userMessage: ChatMessage = {
|
|
role: "user",
|
|
content: `Create a BEST EVER UX design prompt for this app:\n\n${appDescription}`,
|
|
};
|
|
|
|
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
|
}
|
|
}
|
|
|
|
export default OllamaCloudService;
|