Reorganize: Move all skills to skills/ folder

- Created skills/ directory
- Moved 272 skills to skills/ subfolder
- Kept agents/ at root level
- Kept installation scripts and docs at root level

Repository structure:
- skills/           - All 272 skills from skills.sh
- agents/           - Agent definitions
- *.sh, *.ps1       - Installation scripts
- README.md, etc.   - Documentation

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
admin
2026-01-23 18:05:17 +00:00
Unverified
parent 2b4e974878
commit b723e2bd7d
4083 changed files with 1056 additions and 1098063 deletions

View File

@@ -0,0 +1,9 @@
{
"name": "glm-plan-bug",
"description": "Submit case feedback and bug reports for GLM Coding Plan service",
"version": "0.0.1",
"author": {
"name": "gongchao",
"email": "chao.gong@z.ai"
}
}

View File

@@ -0,0 +1,29 @@
# GLM Plan Bug Plugin
Submit case feedback and bug reports for GLM Coding Plan.
Attention:
- This plugin is designed to work specifically with the GLM Coding Plan in Claude Code.
- This plugin requires Node.js to be installed in your environment.
## How to use
In Claude Code, run:
```
/glm-plan-bug:case-feedback i have a issue with my plan
```
## Command overview
### /case-feedback
Submit case feedback to report issues or suggestions for the current conversation.
**Execution flow:**
1. Command `/case-feedback` triggers `@case-feedback-agent`
2. The agent invokes `@case-feedback-skill`
3. The skill gathers feedback information and executes the submission script
4. The skill returns either the successful response or the failure reason
**Important constraint:** Run the submission exactly once and return immediately whether it succeeds or fails.

View File

@@ -0,0 +1,37 @@
---
name: case-feedback-agent
description: Submit case feedback to report issues or suggestions. Triggered by the /glm-plan-bug:case-feedback command.
tools: Bash, Read, Skill, Glob, Grep
---
# Case Feedback Agent
You are responsible for submitting user feedback about the current case/conversation.
## Critical constraint
**Run the submission exactly once.** Regardless of success or failure, execute a single submission and immediately return the result. No retries, no loops.
## Execution
### Invoke the skill
Call @glm-plan-bug:case-feedback-skill to feedback.
The skill will run submit-feedback.mjs automatically, then return the result.
### Report the outcome
Based on the skill output, respond to the user:
Attention: If the Platform in the skill output is ZHIPU, then output Chinese 中文. If it is ZAI, then output English.
- **Success**: Confirm that feedback has been submitted successfully
- **Failure**: Show the error details
## Prohibited actions
- Do not run multiple submissions
- Do not retry automatically after failure
- Do not ask the user whether to retry
- Do not modify user files

View File

@@ -0,0 +1,16 @@
---
allowed-tools: all
description: Submit case feedback to report issues or suggestions for the current conversation
---
# Case Feedback
Invoke @glm-plan-bug:case-feedback-agent to submit feedback for the current case/conversation.
## Critical constraint
**Run the submission exactly once** — regardless of success or failure, execute a single submission and return the result immediately.
## Usage
The user may provide feedback content directly, or you can help summarize the issue. The context will be automatically extracted from the current conversation.

View File

@@ -0,0 +1,63 @@
---
name: case-feedback-skill
description: Run the case feedback script to submit feedback for the current conversation. Only use when invoked by case-feedback-agent.
allowed-tools: Bash, Read
---
# Case Feedback Skill
Execute the feedback submission script and return the result.
## Critical constraint
**Run the script exactly once** — regardless of success or failure, execute it once and return the outcome.
## Execution
### Gather information
**feedback**:
- If the user explicitly provided feedback text, use that directly
- If the user describes a problem or issue, summarize it concisely as the feedback
- Ask the user for clarification only if no feedback intent can be inferred
**context**:
The context contains a summary of the conversation, and **must append** the original, complete conversation history data.
Summarize the current conversation context, including:
- What task the user was trying to accomplish
- What operations were performed
- Any errors or unexpected behaviors encountered
- Relevant code snippets or file paths (keep it concise)
**code_type**:
Identify the programming language or code type involved (e.g., JavaScript, Python, Java). If not relevant, leave it blank.
**request_id**:
Extract the unique request ID or the session ID associated with this conversation or case. If not available, leave it blank.
**happened_time**:
Extract the timestamp when the issue occurred. If not mentioned, leave it blank.
### Run the submission
Use Node.js to execute the bundled script, pay attention to the path changes in the Windows:
```bash
node scripts/submit-feedback.mjs --feedback "user feedback content" --context "conversation context summary" --code_type "the current code type, eg: javascript, typescript, python, java, etc. Not required." --happened_time "the time when the issue happened, eg: 2025-12-10 11:15:00. Not required." --request_id "the unique request id if available. Not required."
```
> If your working directory is elsewhere, `cd` into the plugin root first or use an absolute path:
> `node /absolute/path/to/glm-plan-bug/skills/case-feedback-skill/scripts/submit-feedback.mjs --feedback "..." --context "..."`
### Return the result
After execution, return the result to the caller:
- **Success**: display the submission confirmation
- **Failure**: show the error details and likely cause

View File

@@ -0,0 +1,176 @@
#!/usr/bin/env node
/**
* Case feedback submission script.
* Determines whether to call the Z.ai or ZHIPU endpoint based on ANTHROPIC_BASE_URL
* and authenticates with ANTHROPIC_AUTH_TOKEN.
*/
import https from 'https';
// Parse command line arguments
const args = process.argv.slice(2);
let feedback = '';
let context = '';
let codeType = '';
let happenedTime = '';
let requestId = '';
for (let i = 0; i < args.length; i++) {
if (args[i] === '--feedback' && args[i + 1]) {
feedback = args[i + 1];
i++;
} else if (args[i] === '--context' && args[i + 1]) {
context = args[i + 1];
i++;
} else if (args[i] === '--code_type' && args[i + 1]) {
codeType = args[i + 1];
i++;
} else if (args[i] === '--happened_time' && args[i + 1]) {
happenedTime = args[i + 1];
i++;
} else if (args[i] === '--request_id' && args[i + 1]) {
requestId = args[i + 1];
i++;
}
}
if (!feedback) {
console.error('Error: --feedback argument is required');
console.error('');
console.error('Usage:');
console.error(' node submit-feedback.mjs --feedback "your feedback" --context "context info"');
process.exit(1);
}
if (!context) {
console.error('Error: --context argument is required');
console.error('');
console.error('Usage:');
console.error(' node submit-feedback.mjs --feedback "your feedback" --context "context info"');
process.exit(1);
}
// Read environment variables
const baseUrl = process.env.ANTHROPIC_BASE_URL || '';
const authToken = process.env.ANTHROPIC_AUTH_TOKEN || '';
if (!authToken) {
console.error('Error: ANTHROPIC_AUTH_TOKEN is not set');
console.error('');
console.error('Set the environment variable and retry:');
console.error(' export ANTHROPIC_AUTH_TOKEN="your-token-here"');
process.exit(1);
}
// Validate ANTHROPIC_BASE_URL
if (!baseUrl) {
console.error('Error: ANTHROPIC_BASE_URL is not set');
console.error('');
console.error('Set the environment variable and retry:');
console.error(' export ANTHROPIC_BASE_URL="https://api.z.ai/api/anthropic"');
console.error(' or');
console.error(' export ANTHROPIC_BASE_URL="https://open.bigmodel.cn/api/anthropic"');
process.exit(1);
}
// Determine which platform to use
let platform;
let feedbackUrl;
// Extract the base domain from ANTHROPIC_BASE_URL
const parsedBaseUrl = new URL(baseUrl);
const baseDomain = `${parsedBaseUrl.protocol}//${parsedBaseUrl.host}`;
if (baseUrl.includes('api.z.ai')) {
platform = 'ZAI';
feedbackUrl = `${baseDomain}/api/monitor/feedback/case`;
} else if (baseUrl.includes('open.bigmodel.cn') || baseUrl.includes('dev.bigmodel.cn')) {
platform = 'ZHIPU';
feedbackUrl = `${baseDomain}/api/monitor/feedback/case`;
} else {
console.error('Error: Unrecognized ANTHROPIC_BASE_URL:', baseUrl);
console.error('');
console.error('Supported values:');
console.error(' - https://api.z.ai/api/anthropic');
console.error(' - https://open.bigmodel.cn/api/anthropic');
process.exit(1);
}
console.log(`Platform: ${platform}`);
console.log('');
const submitFeedback = () => {
return new Promise((resolve, reject) => {
const parsedUrl = new URL(feedbackUrl);
const postData = JSON.stringify({
feedback: feedback,
context: context,
codeType: codeType,
happenedTime: happenedTime,
requestId: requestId
});
const options = {
hostname: parsedUrl.hostname,
port: 443,
path: parsedUrl.pathname,
method: 'POST',
headers: {
'Authorization': authToken,
'Content-Type': 'application/json',
'Accept-Language': 'en-US,en',
'Content-Length': Buffer.byteLength(postData)
}
};
const req = https.request(options, (res) => {
let data = '';
res.on('data', (chunk) => {
data += chunk;
});
res.on('end', () => {
if (res.statusCode !== 200) {
return reject(new Error(`HTTP ${res.statusCode}\n${data}`));
}
console.log('Feedback submitted successfully!');
console.log('');
try {
const json = JSON.parse(data);
console.log('Response:');
console.log(JSON.stringify(json, null, 2));
} catch (e) {
console.log('Response body:');
console.log(data);
}
console.log('');
resolve();
});
});
req.on('error', (error) => {
reject(error);
});
req.write(postData);
req.end();
});
};
const run = async () => {
console.log('Submitting feedback...');
console.log('Feedback:', feedback);
console.log('Context:', context.substring(0, 200) + (context.length > 200 ? '...' : ''));
console.log('');
await submitFeedback();
};
run().catch((error) => {
console.error('Request failed:', error.message);
process.exit(1);
});

View File

@@ -0,0 +1,9 @@
{
"name": "glm-plan-usage",
"description": "Query quota and usage statistics for GLM Coding Plan service",
"version": "0.0.1",
"author": {
"name": "gongchao",
"email": "chao.gong@z.ai"
}
}

View File

@@ -0,0 +1,29 @@
# GLM Plan Usage Plugin
Query quota and usage statistics for GLM Coding Plan.
Attention:
- This plugin is designed to work specifically with the GLM Coding Plan in Claude Code.
- This plugin requires Node.js to be installed in your environment.
## How to use
In Claude Code, run:
```
/glm-plan-usage:usage-query
```
## Command overview
### /usage-query
Retrieve the usage information for the current account.
**Execution flow:**
1. Command `/usage-query` triggers `@usage-query-agent`
2. The agent invokes `@usage-query-skill`
3. The skill checks the Node.js environment and executes the query script with the appropriate method
4. The skill returns either the successful response or the failure reason
**Important constraint:** Run the query exactly once and return immediately whether it succeeds or fails.

View File

@@ -0,0 +1,34 @@
---
name: usage-query-agent
description: Query GLM Coding Plan usage statistics for the current account. Triggered by the /glm-plan-usage:usage-query command.
tools: Bash, Read, Skill, Glob, Grep
---
# Usage Query Agent
You are responsible for querying the user's current usage information.
## Critical constraint
**Run the query exactly once.** Regardless of success or failure, execute a single query and immediately return the result. No retries, no loops.
## Execution
### Invoke the skill
Call @glm-plan-usage:usage-query-skill to perform the usage query.
The skill will run query-usage.mjs automatically, then return the result.
### Report the outcome
Based on the skill output, respond to the user:
Attention: If the Platform in the skill output is ZHIPU, then output Chinese 中文. If it is ZAI, then output English.
## Prohibited actions
- Do not run multiple queries
- Do not retry automatically after failure
- Do not ask the user whether to retry
- Do not modify files

View File

@@ -0,0 +1,12 @@
---
allowed-tools: all
description: Query the usage information for the current account
---
# Usage Query
Invoke @glm-plan-usage:usage-query-agent to retrieve the usage information for the current account.
## Critical constraint
**Run the query exactly once** — regardless of success or failure, execute a single query and return the result immediately.

View File

@@ -0,0 +1,33 @@
---
name: usage-query-skill
description: Run the usage query script to retrieve account usage information for GLM Coding Plan. Only use when invoked by usage-query-agent.
allowed-tools: Bash, Read
---
# Usage Query Skill
Execute the usage query script and return the result.
## Critical constraint
**Run the script exactly once** — regardless of success or failure, execute it once and return the outcome.
## Execution
### Run the query
Use Node.js to execute the bundled script, pay attention to the path changes in the Windows:
```bash
node scripts/query-usage.mjs
```
> If your working directory is elsewhere, `cd` into the plugin root first or use an absolute path:
> `node /absolute/path/to/glm-plan-usage/skills/usage-query-skill/scripts/query-usage.mjs`
### Return the result
After execution, return the result to the caller:
- **Success**: display the usage payload (JSON)
- **Failure**: show the error details and likely cause

View File

@@ -0,0 +1,175 @@
#!/usr/bin/env node
/**
* Usage query script.
* Determines whether to call the Z.ai or ZHIPU endpoint based on ANTHROPIC_BASE_URL
* and authenticates with ANTHROPIC_AUTH_TOKEN.
*/
import https from 'https';
// Read environment variables
const baseUrl = process.env.ANTHROPIC_BASE_URL || '';
const authToken = process.env.ANTHROPIC_AUTH_TOKEN || '';
if (!authToken) {
console.error('Error: ANTHROPIC_AUTH_TOKEN is not set');
console.error('');
console.error('Set the environment variable and retry:');
console.error(' export ANTHROPIC_AUTH_TOKEN="your-token-here"');
process.exit(1);
}
// Validate ANTHROPIC_BASE_URL
if (!baseUrl) {
console.error('Error: ANTHROPIC_BASE_URL is not set');
console.error('');
console.error('Set the environment variable and retry:');
console.error(' export ANTHROPIC_BASE_URL="https://api.z.ai/api/anthropic"');
console.error(' or');
console.error(' export ANTHROPIC_BASE_URL="https://open.bigmodel.cn/api/anthropic"');
process.exit(1);
}
// Determine which platform to use
let platform;
let modelUsageUrl;
let toolUsageUrl;
let quotaLimitUrl;
// Extract the base domain from ANTHROPIC_BASE_URL
const parsedBaseUrl = new URL(baseUrl);
const baseDomain = `${parsedBaseUrl.protocol}//${parsedBaseUrl.host}`;
if (baseUrl.includes('api.z.ai')) {
platform = 'ZAI';
modelUsageUrl = `${baseDomain}/api/monitor/usage/model-usage`;
toolUsageUrl = `${baseDomain}/api/monitor/usage/tool-usage`;
quotaLimitUrl = `${baseDomain}/api/monitor/usage/quota/limit`;
} else if (baseUrl.includes('open.bigmodel.cn') || baseUrl.includes('dev.bigmodel.cn')) {
platform = 'ZHIPU';
modelUsageUrl = `${baseDomain}/api/monitor/usage/model-usage`;
toolUsageUrl = `${baseDomain}/api/monitor/usage/tool-usage`;
quotaLimitUrl = `${baseDomain}/api/monitor/usage/quota/limit`;
} else {
console.error('Error: Unrecognized ANTHROPIC_BASE_URL:', baseUrl);
console.error('');
console.error('Supported values:');
console.error(' - https://api.z.ai/api/anthropic');
console.error(' - https://open.bigmodel.cn/api/anthropic');
process.exit(1);
}
console.log(`Platform: ${platform}`);
console.log('');
// Time window: from yesterday at the current hour (HH:00:00) to today at the current hour end (HH:59:59).
const now = new Date();
const startDate = new Date(now.getFullYear(), now.getMonth(), now.getDate() - 1, now.getHours(), 0, 0, 0);
const endDate = new Date(now.getFullYear(), now.getMonth(), now.getDate(), now.getHours(), 59, 59, 999);
// Format dates as yyyy-MM-dd HH:mm:ss
const formatDateTime = (date) => {
const year = date.getFullYear();
const month = String(date.getMonth() + 1).padStart(2, '0');
const day = String(date.getDate()).padStart(2, '0');
const hours = String(date.getHours()).padStart(2, '0');
const minutes = String(date.getMinutes()).padStart(2, '0');
const seconds = String(date.getSeconds()).padStart(2, '0');
return `${year}-${month}-${day} ${hours}:${minutes}:${seconds}`;
};
const startTime = formatDateTime(startDate);
const endtime = formatDateTime(endDate);
// Properly encode query parameters
const queryParams = `?startTime=${encodeURIComponent(startTime)}&endTime=${encodeURIComponent(endtime)}`;
const processQuotaLimit = (data) => {
if (!data || !data.limits) return data;
data.limits = data.limits.map(item => {
if (item.type === 'TOKENS_LIMIT') {
return {
type: 'Token usage(5 Hour)',
percentage: item.percentage
};
}
if (item.type === 'TIME_LIMIT') {
return {
type: 'MCP usage(1 Month)',
percentage: item.percentage,
currentUsage: item.currentValue,
totol: item.usage,
usageDetails: item.usageDetails
};
}
return item;
});
return data;
};
const queryUsage = (apiUrl, label, appendQueryParams = true, postProcessor = null) => {
return new Promise((resolve, reject) => {
const parsedUrl = new URL(apiUrl);
const options = {
hostname: parsedUrl.hostname,
port: 443,
path: parsedUrl.pathname + (appendQueryParams ? queryParams : ''),
method: 'GET',
headers: {
'Authorization': authToken,
'Accept-Language': 'en-US,en',
'Content-Type': 'application/json'
}
};
const req = https.request(options, (res) => {
let data = '';
res.on('data', (chunk) => {
data += chunk;
});
res.on('end', () => {
if (res.statusCode !== 200) {
return reject(new Error(`[${label}] HTTP ${res.statusCode}\n${data}`));
}
console.log(`${label} data:`);
console.log('');
try {
const json = JSON.parse(data);
let outputData = json.data || json;
if (postProcessor && json.data) {
outputData = postProcessor(json.data);
}
console.log(JSON.stringify(outputData));
} catch (e) {
console.log('Response body:');
console.log(data);
}
console.log('');
resolve();
});
});
req.on('error', (error) => {
reject(error);
});
req.end();
});
};
const run = async () => {
await queryUsage(modelUsageUrl, 'Model usage');
await queryUsage(toolUsageUrl, 'Tool usage');
await queryUsage(quotaLimitUrl, 'Quota limit', false, processQuotaLimit);
};
run().catch((error) => {
console.error('Request failed:', error.message);
process.exit(1);
});