## ๐ŸŽ Special Christmas Offer Don't miss out on the AI Coding Revolution. Get the most powerful model for the lowest price! ๐ŸŽ„ **Xmas mega discount:** **50% OFF** first-purchase! โž• **Plus 10% OFF** using the invite code below! ๐Ÿ”— **Here is your invite code URL:** [https://z.ai/subscribe?ic=R0K78RJKNW](https://z.ai/subscribe?ic=R0K78RJKNW) ๐ŸŽŸ๏ธ **Invite Code:** `R0K78RJKNW` --- # ๐Ÿš€ GLM-4.7 vs. The $200 Giants: Is China's $3 AI Coding Tool the New Market King? ```text โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ•šโ•โ•โ•โ•โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•”โ–ˆโ–ˆโ–ˆโ–ˆโ•”โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•‘โ•šโ•โ•โ•โ•โ•โ•šโ•โ•โ•โ•โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•”โ• โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘ โ•šโ•โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ•šโ•โ•โ•โ•โ•โ• โ•šโ•โ•โ•โ•โ•โ•โ•โ•šโ•โ• โ•šโ•โ• โ•šโ•โ• โ•šโ•โ• THE FRONTIER AGENTIC REASONING MODEL (2025) ``` ### ๐Ÿ’ก Key Takeaways (TL;DR) - **GLM-4.7** is the new **SOTA (State of the Art)** AI coding model for 2025. - Developed by **Zhipu AI**, it offers enterprise-level performance matching or exceeding flagship models like **Claude Sonnet 4.5** and **GPT-5.1 High**. - **Context Window**: Massive **200K tokens** for full codebase analysis. - **Best For**: Cost-conscious developers, agentic workflows, and high-complexity debugging. The global landscape for AI-powered development is shifting. While Western tools like **Cursor Pro** and **GitHub Copilot** have dominated by charging premium subscription rates (often reaching $200 per year), a new contender from Beijing, China, has arrived to dismantle that pricing model. **Zhipu AI** has released **GLM-4.7**, a large language model specifically engineered for coding, offering performance that rivals top-tier US models. For pricing information, visit [Z.ai subscription page](https://z.ai/subscribe?ic=R0K78RJKNW) or use via [OpenRouter](https://openrouter.ai/). --- ## โš”๏ธ The Frontier Battle: Verified Benchmarks GLM-4.7 demonstrates competitive performance against the newest generation of flagship models, including **Claude Sonnet 4.5** and **GPT-5.1 High**, based on the official Z.ai Technical Report (Dec 2025). ### ๐Ÿ“Š 2025 AI Coding Model Performance Comparison *Note: Best scores per category are highlighted in $\color{green}{\text{green}}$.*
``` โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ ๐Ÿ† GLM-4.7: SOTA 2025 AI Model โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ โ•‘ โ•‘ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ•‘ โ•‘ โ”‚ ๐Ÿงฎ MATH (AIME 25) โ”‚ โ•‘ โ•‘ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GLM-4.7 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 95.7% ๐Ÿฅ‡ โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Gemini 3.0 Pro โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘ 95.0% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GPT-5.1 High โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘ 94.0% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ DeepSeek-V3.2 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘ 93.1% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Claude Sonnet 4.5 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 87.0% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ•‘ โ•‘ โ”‚ Source: [Z.ai](https://z.ai/blog/glm-4.7) โ”‚ โ•‘ โ•‘ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ•‘ โ•‘ โ•‘ โ•‘ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ•‘ โ•‘ โ”‚ ๐Ÿ’ป CODING (LiveCodeBench v6) โ”‚ โ•‘ โ•‘ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Gemini 3.0 Pro โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 90.7% ๐Ÿฅ‡ โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GPT-5.1 High โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘ 87.0% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GLM-4.7 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘ 84.9% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ DeepSeek-V3.2 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘ 83.3% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Claude Sonnet 4.5 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 64.0% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ•‘ โ•‘ โ”‚ Source: [Z.ai](https://z.ai/blog/glm-4.7) โ”‚ โ•‘ โ•‘ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ•‘ โ•‘ โ•‘ โ•‘ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ•‘ โ•‘ โ”‚ ๐Ÿ”ฌ SCIENCE (GPQA-Diamond) โ”‚ โ•‘ โ•‘ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Gemini 3.0 Pro โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 91.9% ๐Ÿฅ‡ โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GPT-5.1 High โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘ 88.1% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GLM-4.7 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘ 85.7% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Claude Sonnet 4.5 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘ 83.4% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ DeepSeek-V3.2 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 82.4% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ•‘ โ•‘ โ”‚ Source: [Z.ai](https://z.ai/blog/glm-4.7) โ”‚ โ•‘ โ•‘ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ•‘ โ•‘ โ•‘ โ•‘ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ•‘ โ•‘ โ”‚ ๐Ÿง  LOGIC (HLE w/Tools) โ”‚ โ•‘ โ•‘ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Gemini 3.0 Pro โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 45.8% ๐Ÿฅ‡ โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GLM-4.7 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 42.8% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GPT-5.1 High โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 42.7% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ DeepSeek-V3.2 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 40.8% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Claude Sonnet 4.5 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 32.0% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ•‘ โ•‘ โ”‚ Source: [Z.ai](https://z.ai/blog/glm-4.7) โ”‚ โ•‘ โ•‘ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ•‘ โ•‘ โ•‘ โ•‘ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ•‘ โ•‘ โ”‚ โš™๏ธ ENGINEERING (SWE-bench) โ”‚ โ•‘ โ•‘ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Claude Sonnet 4.5 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘ 77.2% ๐Ÿฅ‡ โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GPT-5.1 High โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘ 76.3% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Gemini 3.0 Pro โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘ 76.2% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GLM-4.7 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘ 73.8% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ DeepSeek-V3.2 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 73.1% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ•‘ โ•‘ โ”‚ Source: [SWE-bench](https://github.com/princeton-nlp/SWE-bench) โ”‚ โ•‘ โ•‘ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ•‘ โ•‘ โ•‘ โ•‘ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ•‘ โ•‘ โ”‚ ๐Ÿค– AGENTIC (ฯ„ยฒ-Bench) โ”‚ โ•‘ โ•‘ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Gemini 3.0 Pro โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 90.7% ๐Ÿฅ‡ โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GLM-4.7 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘ 87.4% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ Claude Sonnet 4.5 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘ 87.2% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ DeepSeek-V3.2 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘ 85.3% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ”‚ GPT-5.1 High โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 82.7% โ”‚ โ”‚ โ•‘ โ•‘ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ•‘ โ•‘ โ”‚ Source: [Z.ai](https://z.ai/blog/glm-4.7) โ”‚ โ•‘ โ•‘ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ•‘ โ•‘ โ•‘ โ•‘ ๐ŸŽฏ Key Wins: Math (1st) | Agentic (2nd) | Logic (2nd) | Coding (3rd) โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• ```
| Category | Benchmark | **GLM-4.7** | Claude Sonnet 4.5 | GPT-5.1 High | DeepSeek-V3.2 | Gemini 3.0 Pro | Source | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | **Math** | AIME 25 | $\color{green}{\textbf{95.7}}$ | 87.0 | 94.0 | 93.1 | 95.0 | [Z.ai](https://z.ai/blog/glm-4.7) | | **Coding** | LiveCodeBench v6 | 84.9 | 64.0 | 87.0 | 83.3 | $\color{green}{\textbf{90.7}}$ | [Z.ai](https://z.ai/blog/glm-4.7) | | **Science** | GPQA-Diamond | 85.7 | 83.4 | 88.1 | 82.4 | $\color{green}{\textbf{91.9}}$ | [Z.ai](https://z.ai/blog/glm-4.7) | | **Logic** | HLE (w/ Tools) | 42.8 | 32.0 | 42.7 | 40.8 | $\color{green}{\textbf{45.8}}$ | [Z.ai](https://z.ai/blog/glm-4.7) | | **Engineering**| SWE-bench (Ver.) | 73.8% | $\color{green}{\textbf{77.2%}}$ | 76.3% | 73.1% | 76.2% | [Z.ai](https://z.ai/blog/glm-4.7) | | **Agentic** | ฯ„ยฒ-Bench | 87.4% | 87.2% | 82.7% | 85.3% | $\color{green}{\textbf{90.7%}}$ | [Z.ai](https://z.ai/blog/glm-4.7) | **๐Ÿ“Š Additional Sources:** [HuggingFace Model Card](https://huggingface.co/zai-org/GLM-4.7) | [Ollama Library](https://ollama.com/library/glm-4.7) | [LLM-Stats Analysis](https://llm-stats.com/models/glm-4.7) | [Vertu Comparison](https://vertu.com/lifestyle/glm-4-7-vs-claude-opus-4-5-the-thinking-open-source-challenger/) --- ## ๐Ÿ› ๏ธ What is GLM-4.7? Technical Specifications and Features GLM-4.7 is the latest iteration of the General Language Model (GLM) series developed by Beijing-based **Zhipu AI**. ### ๐Ÿš€ Key Technical Highlights (from Z.ai blog) - **Interleaved Thinking:** GLM-4.7 thinks before every response and tool calling, improving instruction following and quality of generation. - **Preserved Thinking:** In coding agent scenarios, GLM-4.7 automatically retains all thinking blocks across multi-turn conversations, reusing existing reasoning instead of re-deriving from scratch. - **Turn-level Thinking:** GLM-4.7 supports per-turn control over reasoning within a sessionโ€”disable thinking for lightweight requests to reduce latency/cost, enable it for complex tasks to improve accuracy and stability. - **Tool Using:** GLM-4.7 achieves significant improvements in tool using, with better performances on benchmarks such as ฯ„ยฒ-Bench and on web browsing via BrowseComp. --- ## ๐Ÿ“ˆ GLM-4.7 vs GLM-4.6: Key Improvements Based on [Z.ai Technical Report](https://z.ai/blog/glm-4.7), GLM-4.7 delivers significant gains across core benchmarks compared to its predecessor GLM-4.6: ### ๏ฟฝ Performance Gains | Benchmark | GLM-4.6 | GLM-4.7 | Improvement | | :--- | :--- | :--- | :--- | | **SWE-bench** | 68.0% | 73.8% | **+5.8%** | | **SWE-bench Multilingual** | 53.8% | 66.7% | **+12.9%** | | **Terminal Bench 2.0** | 24.5% | 41.0% | **+16.5%** | | **HLE (w/ Tools)** | 30.4% | 42.8% | **+12.4%** | | **LiveCodeBench-v6** | 82.8% | 84.9% | **+2.1%** | ### ๏ฟฝ๏ธ Enhanced Capabilities - **Interleaved Thinking:** GLM-4.7 thinks before every response and tool calling, improving instruction following and quality of generation. - **Preserved Thinking:** In coding agent scenarios, GLM-4.7 automatically retains all thinking blocks across multi-turn conversations, reusing existing reasoning instead of re-deriving from scratch. - **Turn-level Thinking:** GLM-4.7 supports per-turn control over reasoning within a sessionโ€”disable thinking for lightweight requests to reduce latency/cost, enable it for complex tasks to improve accuracy and stability. --- ## โ“ FAQ: GLM-4.7 and the AI Coding Market **What is best cost-effective AI for coding in 2025?** The market for high-performance, budget-friendly AI has expanded significantly in 2025. Leading the pack are **GLM-4.7 (Zhipu AI)** and **DeepSeek-V3.2**, both offering performance comparable to **Claude Sonnet 4.5** at a fraction of the cost. GLM-4.7 is often preferred for agentic workflows due to its advanced "Preserved Thinking" architecture, while DeepSeek-V3.2 remains a strong choice for raw logic and reasoning tasks. **Is GLM-4.7 better than GPT-5.1 or Claude Sonnet 4.5 for coding?** Objectively, **Claude Sonnet 4.5** and **GPT-5.1** currently hold the edge in massive-scale architectural planning and natural language nuance. However, GLM-4.7 has achieved parity or leadership in execution-heavy benchmarks (LiveCodeBench: 84.9) and mathematical reasoning (AIME 25: 95.7). For developers, the choice is often between paying for the absolute peak (Claude/GPT) or achieving 95% of that performance with GLM-4.7 for 1/20th the price. **How much does the GLM-4.7 coding tool cost?** GLM-4.7 is available via the [Z.ai API platform](https://docs.z.ai/guides/llm/glm-4.7) and through [OpenRouter](https://openrouter.ai/). For detailed pricing, visit [Z.ai subscription page](https://z.ai/subscribe?ic=R0K78RJKNW). **Who developed GLM-4.7?** GLM-4.7 was developed by **Zhipu AI**, a leading artificial intelligence company based in Beijing, China, emerging from the Knowledge Engineering Group (KEG) at Tsinghua University. **Can I use GLM-4.7 in the US and Europe?** Yes, GLM-4.7 is available worldwide through [OpenRouter](https://openrouter.ai/). It is compatible with coding agent frameworks mentioned in the Z.ai blog: **Claude Code**, **Kilo Code**, **Cline**, and **Roo Code**. --- ## ๐Ÿ“š References & Methodology All data presented in this article is derived from the [Z.ai Official Technical Report](https://z.ai/blog/glm-4.7) (December 2025): - **Benchmark Performance:** GLM-4.7 compared against GLM-4.6, Kimi K2 Thinking, DeepSeek-V3.2, Gemini 3.0 Pro, Claude Sonnet 4.5, GPT-5 High, and GPT-5.1 High across 17 benchmarks. - **Core Coding:** SWE-bench (73.8%, +5.8%), SWE-bench Multilingual (66.7%, +12.9%), Terminal Bench 2.0 (41%, +16.5%). - **Reasoning:** HLE (w/ Tools): 42.8%, AIME 2025: 95.7%, GPQA-Diamond: 85.7%. - **Agentic:** ฯ„ยฒ-Bench: 87.4%, BrowseComp: 52.0%. - **Features:** Interleaved Thinking, Preserved Thinking, Turn-level Thinking for stable multi-turn conversations. - **Supported Tools:** Claude Code, Kilo Code, Cline, and Roo Code for agent workflows. --- ## ๐Ÿ”— Source Links - [Z.ai Tech Report](https://z.ai/blog/glm-4.7) - [HuggingFace Model Card](https://huggingface.co/zai-org/GLM-4.7) - [Ollama Library](https://ollama.com/library/glm-4.7) - [LLM-Stats Analysis](https://llm-stats.com/models/glm-4.7) - [Vertu: GLM-4.7 vs Claude Opus 4.5](https://vertu.com/lifestyle/glm-4-7-vs-claude-opus-4-5-the-thinking-open-source-challenger/) --- *The era of "$200 AI coding tax" is over. Join the GLM revolution today.*