Make Qwen OAuth work on Vercel
This commit is contained in:
@@ -14,3 +14,7 @@ OLLAMA_ENDPOINT=https://ollama.com/api
|
||||
ZAI_API_KEY=
|
||||
ZAI_GENERAL_ENDPOINT=https://api.z.ai/api/paas/v4
|
||||
ZAI_CODING_ENDPOINT=https://api.z.ai/api/coding/paas/v4
|
||||
|
||||
# Site Configuration (Required for OAuth in production)
|
||||
# Set to your production URL (e.g., https://your-app.vercel.app)
|
||||
NEXT_PUBLIC_SITE_URL=http://localhost:6002
|
||||
|
||||
57
app/api/ollama/chat/route.ts
Normal file
57
app/api/ollama/chat/route.ts
Normal file
@@ -0,0 +1,57 @@
|
||||
import { NextRequest, NextResponse } from "next/server";
|
||||
import { normalizeOllamaBase, DEFAULT_OLLAMA_BASE } from "../constants";
|
||||
|
||||
const API_PREFIX = "/api";
|
||||
|
||||
function getApiKey(request: NextRequest): string | null {
|
||||
return request.headers.get("x-ollama-api-key");
|
||||
}
|
||||
|
||||
function getBaseUrl(request: NextRequest): string {
|
||||
const header = request.headers.get("x-ollama-endpoint");
|
||||
if (header && header.trim().length > 0) {
|
||||
return normalizeOllamaBase(header);
|
||||
}
|
||||
return DEFAULT_OLLAMA_BASE;
|
||||
}
|
||||
|
||||
export async function POST(request: NextRequest) {
|
||||
const apiKey = getApiKey(request);
|
||||
if (!apiKey) {
|
||||
return NextResponse.json(
|
||||
{ error: "Ollama API key is required" },
|
||||
{ status: 401 }
|
||||
);
|
||||
}
|
||||
|
||||
const body = await request.json();
|
||||
const baseUrl = getBaseUrl(request);
|
||||
const targetUrl = `${baseUrl}${API_PREFIX}/chat`;
|
||||
|
||||
try {
|
||||
const response = await fetch(targetUrl, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
},
|
||||
body: JSON.stringify(body),
|
||||
});
|
||||
|
||||
const payload = await response.text();
|
||||
if (!response.ok) {
|
||||
return NextResponse.json(
|
||||
{ error: "Ollama chat request failed", details: payload },
|
||||
{ status: response.status }
|
||||
);
|
||||
}
|
||||
|
||||
return NextResponse.json(payload ? JSON.parse(payload) : {});
|
||||
} catch (error) {
|
||||
console.error("Ollama chat proxy failed", error);
|
||||
return NextResponse.json(
|
||||
{ error: "Ollama chat request failed" },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
}
|
||||
7
app/api/ollama/constants.ts
Normal file
7
app/api/ollama/constants.ts
Normal file
@@ -0,0 +1,7 @@
|
||||
export const DEFAULT_OLLAMA_BASE = process.env.NEXT_PUBLIC_OLLAMA_ENDPOINT || process.env.OLLAMA_ENDPOINT || "https://ollama.com";
|
||||
export function normalizeOllamaBase(url?: string): string {
|
||||
if (!url) return DEFAULT_OLLAMA_BASE.replace(/\/$/, "");
|
||||
const trimmed = url.trim();
|
||||
if (!trimmed) return DEFAULT_OLLAMA_BASE.replace(/\/$/, "");
|
||||
return trimmed.replace(/\/$/, "");
|
||||
}
|
||||
88
app/api/ollama/models/route.ts
Normal file
88
app/api/ollama/models/route.ts
Normal file
@@ -0,0 +1,88 @@
|
||||
import { NextRequest, NextResponse } from "next/server";
|
||||
import { normalizeOllamaBase, DEFAULT_OLLAMA_BASE } from "../constants";
|
||||
|
||||
const API_PREFIX = "/api";
|
||||
|
||||
function getApiKey(request: NextRequest): string | null {
|
||||
return request.headers.get("x-ollama-api-key");
|
||||
}
|
||||
|
||||
function getBaseUrl(request: NextRequest): string {
|
||||
const header = request.headers.get("x-ollama-endpoint");
|
||||
if (header && header.trim().length > 0) {
|
||||
return normalizeOllamaBase(header);
|
||||
}
|
||||
return DEFAULT_OLLAMA_BASE;
|
||||
}
|
||||
|
||||
async function fetchModelNames(url: string, apiKey: string): Promise<string[]> {
|
||||
const response = await fetch(`${url}`, {
|
||||
method: "GET",
|
||||
headers: {
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
Accept: "application/json",
|
||||
},
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text().catch(() => "Failed to parse");
|
||||
throw new Error(`${response.status} ${response.statusText} - ${errorText}`);
|
||||
}
|
||||
|
||||
const json = await response.json().catch(() => null);
|
||||
const candidates = Array.isArray(json?.models)
|
||||
? json.models
|
||||
: Array.isArray(json?.data)
|
||||
? json.data
|
||||
: Array.isArray(json)
|
||||
? json
|
||||
: [];
|
||||
|
||||
const names: string[] = [];
|
||||
for (const entry of candidates) {
|
||||
if (!entry) continue;
|
||||
const name = entry.name || entry.model || entry.id;
|
||||
if (typeof name === "string" && name.length > 0) {
|
||||
names.push(name);
|
||||
}
|
||||
}
|
||||
|
||||
return names;
|
||||
}
|
||||
|
||||
export async function GET(request: NextRequest) {
|
||||
const apiKey = getApiKey(request);
|
||||
if (!apiKey) {
|
||||
return NextResponse.json(
|
||||
{ error: "Ollama API key is required" },
|
||||
{ status: 401 }
|
||||
);
|
||||
}
|
||||
|
||||
const baseUrl = getBaseUrl(request);
|
||||
const primaryUrl = `${baseUrl}${API_PREFIX}/v1/models`;
|
||||
const fallbackUrl = `${baseUrl}${API_PREFIX}/tags`;
|
||||
|
||||
try {
|
||||
const primaryModels = await fetchModelNames(primaryUrl, apiKey);
|
||||
if (primaryModels.length > 0) {
|
||||
return NextResponse.json({ models: primaryModels });
|
||||
}
|
||||
} catch (error) {
|
||||
console.warn("[Ollama] Primary model fetch failed:", error);
|
||||
}
|
||||
|
||||
try {
|
||||
const fallbackModels = await fetchModelNames(fallbackUrl, apiKey);
|
||||
if (fallbackModels.length > 0) {
|
||||
return NextResponse.json({ models: fallbackModels });
|
||||
}
|
||||
} catch (error) {
|
||||
console.warn("[Ollama] Fallback model fetch failed:", error);
|
||||
}
|
||||
|
||||
return NextResponse.json(
|
||||
{ models: [] },
|
||||
{ status: 502 }
|
||||
);
|
||||
}
|
||||
@@ -5,7 +5,8 @@ export interface OllamaCloudConfig {
|
||||
endpoint?: string;
|
||||
}
|
||||
|
||||
const DEFAULT_OLLAMA_ENDPOINT = "https://ollama.com";
|
||||
const LOCAL_MODELS_URL = "/api/ollama/models";
|
||||
const LOCAL_CHAT_URL = "/api/ollama/chat";
|
||||
const DEFAULT_MODELS = [
|
||||
"gpt-oss:120b",
|
||||
"llama3.1:latest",
|
||||
@@ -47,96 +48,35 @@ export class OllamaCloudService {
|
||||
|
||||
constructor(config: OllamaCloudConfig = {}) {
|
||||
this.config = {
|
||||
endpoint: config.endpoint || DEFAULT_OLLAMA_ENDPOINT,
|
||||
apiKey: config.apiKey || process.env.OLLAMA_API_KEY,
|
||||
endpoint: config.endpoint,
|
||||
};
|
||||
}
|
||||
|
||||
private getBaseUrl(): string {
|
||||
const endpoint = this.config.endpoint || DEFAULT_OLLAMA_ENDPOINT;
|
||||
return endpoint.replace(/\/$/, "");
|
||||
}
|
||||
|
||||
private ensureApiPath(path: string): string {
|
||||
if (path.startsWith("/api")) {
|
||||
return path;
|
||||
}
|
||||
const normalized = path.startsWith("/") ? path : `/${path}`;
|
||||
return `/api${normalized}`;
|
||||
}
|
||||
|
||||
private getHeaders(extra: Record<string, string> = {}): Record<string, string> {
|
||||
const headers: Record<string, string> = {
|
||||
"Content-Type": "application/json",
|
||||
...extra,
|
||||
};
|
||||
|
||||
private ensureApiKey(): string {
|
||||
if (this.config.apiKey) {
|
||||
headers["Authorization"] = `Bearer ${this.config.apiKey}`;
|
||||
return this.config.apiKey;
|
||||
}
|
||||
throw new Error("API key is required. Please configure your Ollama API key in settings.");
|
||||
}
|
||||
|
||||
private getHeaders(additional: Record<string, string> = {}) {
|
||||
const headers: Record<string, string> = {
|
||||
...additional,
|
||||
"x-ollama-api-key": this.ensureApiKey(),
|
||||
};
|
||||
|
||||
if (this.config.endpoint) {
|
||||
headers["x-ollama-endpoint"] = this.config.endpoint;
|
||||
}
|
||||
|
||||
return headers;
|
||||
}
|
||||
|
||||
private async makeRequest(
|
||||
path: string,
|
||||
options: RequestInit = {},
|
||||
useApiPrefix: boolean = true,
|
||||
timeoutMs: number = 120_000
|
||||
): Promise<Response> {
|
||||
const url =
|
||||
this.getBaseUrl() +
|
||||
(useApiPrefix ? this.ensureApiPath(path) : (path.startsWith("/") ? path : `/${path}`));
|
||||
|
||||
const controller = new AbortController();
|
||||
const timeout = setTimeout(() => controller.abort(), timeoutMs);
|
||||
|
||||
const headers = {
|
||||
...this.getHeaders(),
|
||||
...(options.headers || {}),
|
||||
};
|
||||
|
||||
try {
|
||||
return await fetch(url, {
|
||||
...options,
|
||||
headers,
|
||||
signal: controller.signal,
|
||||
});
|
||||
} finally {
|
||||
clearTimeout(timeout);
|
||||
}
|
||||
}
|
||||
|
||||
private parseModelNamesFromArray(models: any[]): string[] {
|
||||
return models
|
||||
.map((entry) => entry?.name || entry?.model || entry?.id)
|
||||
.filter((name): name is string => typeof name === "string" && name.length > 0);
|
||||
}
|
||||
|
||||
private async fetchModelsFromV1(): Promise<string[]> {
|
||||
const response = await this.makeRequest("/v1/models", { method: "GET" }, false);
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text().catch(() => "Failed to parse response");
|
||||
throw new Error(`Ollama /v1/models request failed: ${response.statusText} - ${errorText}`);
|
||||
}
|
||||
|
||||
const json = await response.json().catch(() => null);
|
||||
const entries = Array.isArray(json?.data) ? json.data : [];
|
||||
const names = this.parseModelNamesFromArray(entries);
|
||||
return names;
|
||||
}
|
||||
|
||||
private async fetchModelsFromTags(): Promise<string[]> {
|
||||
const response = await this.makeRequest("/tags", { method: "GET" }, true);
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text().catch(() => "Failed to parse response");
|
||||
throw new Error(`Ollama /tags request failed: ${response.statusText} - ${errorText}`);
|
||||
}
|
||||
|
||||
const json = await response.json().catch(() => null);
|
||||
const entries = Array.isArray(json?.models) ? json.models : Array.isArray(json) ? json : [];
|
||||
const names = this.parseModelNamesFromArray(entries);
|
||||
return names;
|
||||
private async parseJsonResponse(response: Response): Promise<any> {
|
||||
const text = await response.text();
|
||||
if (!text) return null;
|
||||
return JSON.parse(text);
|
||||
}
|
||||
|
||||
async chatCompletion(
|
||||
@@ -145,29 +85,29 @@ export class OllamaCloudService {
|
||||
stream: boolean = false
|
||||
): Promise<APIResponse<string>> {
|
||||
try {
|
||||
const response = await this.makeRequest(
|
||||
"/chat",
|
||||
{
|
||||
method: "POST",
|
||||
body: JSON.stringify({
|
||||
model,
|
||||
messages,
|
||||
stream,
|
||||
}),
|
||||
},
|
||||
true
|
||||
);
|
||||
const response = await fetch(LOCAL_CHAT_URL, {
|
||||
method: "POST",
|
||||
headers: this.getHeaders({ "Content-Type": "application/json" }),
|
||||
body: JSON.stringify({
|
||||
model,
|
||||
messages,
|
||||
stream,
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`Chat completion failed (${response.status}): ${response.statusText} - ${errorText}`);
|
||||
const errorBody = await response.text();
|
||||
throw new Error(
|
||||
`Chat completion failed (${response.status}): ${response.statusText} - ${errorBody}`
|
||||
);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
|
||||
if (data.message && data.message.content) {
|
||||
const data = await this.parseJsonResponse(response);
|
||||
if (data?.message?.content) {
|
||||
return { success: true, data: data.message.content };
|
||||
} else if (data.choices && data.choices[0]?.message?.content) {
|
||||
}
|
||||
|
||||
if (data?.choices?.[0]?.message?.content) {
|
||||
return { success: true, data: data.choices[0].message.content };
|
||||
}
|
||||
|
||||
@@ -183,28 +123,31 @@ export class OllamaCloudService {
|
||||
|
||||
async listModels(): Promise<APIResponse<string[]>> {
|
||||
try {
|
||||
const primary = await this.fetchModelsFromV1();
|
||||
if (primary.length > 0) {
|
||||
this.availableModels = primary;
|
||||
return { success: true, data: primary };
|
||||
const response = await fetch(LOCAL_MODELS_URL, {
|
||||
headers: this.getHeaders(),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorBody = await response.text();
|
||||
throw new Error(`List models failed: ${response.statusText} - ${errorBody}`);
|
||||
}
|
||||
|
||||
const fallback = await this.fetchModelsFromTags();
|
||||
if (fallback.length > 0) {
|
||||
this.availableModels = fallback;
|
||||
return { success: true, data: fallback };
|
||||
}
|
||||
const data = await this.parseJsonResponse(response);
|
||||
const models: string[] = Array.isArray(data?.models) ? data.models : [];
|
||||
|
||||
this.availableModels = DEFAULT_MODELS;
|
||||
return { success: true, data: DEFAULT_MODELS };
|
||||
} catch (error) {
|
||||
console.error("[Ollama] listModels error:", error);
|
||||
|
||||
if (DEFAULT_MODELS.length > 0) {
|
||||
if (models.length === 0) {
|
||||
this.availableModels = DEFAULT_MODELS;
|
||||
return { success: true, data: DEFAULT_MODELS };
|
||||
}
|
||||
|
||||
this.availableModels = models;
|
||||
return { success: true, data: models };
|
||||
} catch (error) {
|
||||
console.error("[Ollama] listModels error:", error);
|
||||
if (DEFAULT_MODELS.length > 0) {
|
||||
this.availableModels = DEFAULT_MODELS;
|
||||
return { success: true, data: DEFAULT_MODELS };
|
||||
}
|
||||
return {
|
||||
success: false,
|
||||
error: error instanceof Error ? error.message : "Failed to list models",
|
||||
@@ -215,146 +158,6 @@ export class OllamaCloudService {
|
||||
getAvailableModels(): string[] {
|
||||
return this.availableModels.length > 0 ? this.availableModels : DEFAULT_MODELS;
|
||||
}
|
||||
|
||||
async enhancePrompt(prompt: string, model?: string): Promise<APIResponse<string>> {
|
||||
const systemMessage: ChatMessage = {
|
||||
role: "system",
|
||||
content: `You are an expert prompt engineer. Your task is to enhance user prompts to make them more precise, actionable, and effective for AI coding agents.
|
||||
|
||||
Apply these principles:
|
||||
1. Add specific context about project and requirements
|
||||
2. Clarify constraints and preferences
|
||||
3. Define expected output format clearly
|
||||
4. Include edge cases and error handling requirements
|
||||
5. Specify testing and validation criteria
|
||||
|
||||
Return ONLY the enhanced prompt, no explanations.`,
|
||||
};
|
||||
|
||||
const userMessage: ChatMessage = {
|
||||
role: "user",
|
||||
content: `Enhance this prompt for an AI coding agent:\n\n${prompt}`,
|
||||
};
|
||||
|
||||
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
||||
}
|
||||
|
||||
async generatePRD(idea: string, model?: string): Promise<APIResponse<string>> {
|
||||
const systemMessage: ChatMessage = {
|
||||
role: "system",
|
||||
content: `You are an expert product manager and technical architect. Generate a comprehensive Product Requirements Document (PRD) based on user's idea.
|
||||
|
||||
Structure your PRD with these sections:
|
||||
1. Overview & Objectives
|
||||
2. User Personas & Use Cases
|
||||
3. Functional Requirements (prioritized)
|
||||
4. Non-functional Requirements
|
||||
5. Technical Architecture Recommendations
|
||||
6. Success Metrics & KPIs
|
||||
|
||||
Use clear, specific language suitable for development teams.`,
|
||||
};
|
||||
|
||||
const userMessage: ChatMessage = {
|
||||
role: "user",
|
||||
content: `Generate a PRD for this idea:\n\n${idea}`,
|
||||
};
|
||||
|
||||
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
||||
}
|
||||
|
||||
async generateActionPlan(prd: string, model?: string): Promise<APIResponse<string>> {
|
||||
const systemMessage: ChatMessage = {
|
||||
role: "system",
|
||||
content: `You are an expert technical lead and project manager. Generate a detailed action plan based on PRD.
|
||||
|
||||
Structure of action plan with:
|
||||
1. Task breakdown with priorities (High/Medium/Low)
|
||||
2. Dependencies between tasks
|
||||
3. Estimated effort for each task
|
||||
4. Recommended frameworks and technologies
|
||||
5. Architecture guidelines and best practices
|
||||
|
||||
Include specific recommendations for:
|
||||
- Frontend frameworks
|
||||
- Backend architecture
|
||||
- Database choices
|
||||
- Authentication/authorization
|
||||
- Deployment strategy`,
|
||||
};
|
||||
|
||||
const userMessage: ChatMessage = {
|
||||
role: "user",
|
||||
content: `Generate an action plan based on this PRD:\n\n${prd}`,
|
||||
};
|
||||
|
||||
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
||||
}
|
||||
|
||||
async generateUXDesignerPrompt(appDescription: string, model?: string): Promise<APIResponse<string>> {
|
||||
const systemMessage: ChatMessage = {
|
||||
role: "system",
|
||||
content: `You are a world-class UX/UI designer with deep expertise in human-centered design principles, user research, interaction design, visual design systems, and modern design tools (Figma, Sketch, Adobe XD).
|
||||
|
||||
Your task is to create an exceptional, detailed prompt for generating the best possible UX design for a given app description.
|
||||
|
||||
Generate a comprehensive UX design prompt that includes:
|
||||
|
||||
1. USER RESEARCH & PERSONAS
|
||||
- Primary target users and their motivations
|
||||
- User pain points and needs
|
||||
- User journey maps
|
||||
- Persona archetypes with demographics and goals
|
||||
|
||||
2. INFORMATION ARCHITECTURE
|
||||
- Content hierarchy and organization
|
||||
- Navigation structure and patterns
|
||||
- User flows and key pathways
|
||||
- Site map or app structure
|
||||
|
||||
3. VISUAL DESIGN SYSTEM
|
||||
- Color palette recommendations (primary, secondary, accent, neutral)
|
||||
- Typography hierarchy and font pairings
|
||||
- Component library approach
|
||||
- Spacing, sizing, and layout grids
|
||||
- Iconography style and set
|
||||
|
||||
4. INTERACTION DESIGN
|
||||
- Micro-interactions and animations
|
||||
- Gesture patterns for touch interfaces
|
||||
- Loading states and empty states
|
||||
- Error handling and feedback mechanisms
|
||||
- Accessibility considerations (WCAG compliance)
|
||||
|
||||
5. KEY SCREENS & COMPONENTS
|
||||
- Core screens that need detailed design
|
||||
- Critical components (buttons, forms, cards, navigation)
|
||||
- Data visualization needs
|
||||
- Responsive design requirements (mobile, tablet, desktop)
|
||||
|
||||
6. DESIGN DELIVERABLES
|
||||
- Wireframes vs. high-fidelity mockups
|
||||
- Design system documentation needs
|
||||
- Prototyping requirements
|
||||
- Handoff specifications for developers
|
||||
|
||||
7. COMPETITIVE INSIGHTS
|
||||
- Design patterns from successful apps in this category
|
||||
- Opportunities to differentiate
|
||||
- Modern design trends to consider
|
||||
|
||||
The output should be a detailed, actionable prompt that a designer or AI image generator can use to create world-class UX designs.
|
||||
|
||||
Make the prompt specific, inspiring, and comprehensive. Use professional UX terminology.`,
|
||||
};
|
||||
|
||||
const userMessage: ChatMessage = {
|
||||
role: "user",
|
||||
content: `Create the BEST EVER UX design prompt for this app:\n\n${appDescription}`,
|
||||
};
|
||||
|
||||
return this.chatCompletion([systemMessage, userMessage], model || "gpt-oss:120b");
|
||||
}
|
||||
}
|
||||
|
||||
export default OllamaCloudService;
|
||||
|
||||
@@ -1,9 +1,18 @@
|
||||
import type { ChatMessage, APIResponse } from "@/types";
|
||||
|
||||
const DEFAULT_QWEN_ENDPOINT = "https://dashscope-intl.aliyuncs.com/compatible-mode/v1";
|
||||
const DEFAULT_OAUTH_BASE = "/api/qwen";
|
||||
const TOKEN_STORAGE_KEY = "promptarch-qwen-tokens";
|
||||
|
||||
function getOAuthBaseUrl(): string {
|
||||
if (typeof window !== "undefined") {
|
||||
return `${window.location.origin}/api/qwen`;
|
||||
}
|
||||
if (process.env.NEXT_PUBLIC_SITE_URL) {
|
||||
return `${process.env.NEXT_PUBLIC_SITE_URL}/api/qwen`;
|
||||
}
|
||||
return "/api/qwen";
|
||||
}
|
||||
|
||||
export interface QwenOAuthConfig {
|
||||
apiKey?: string;
|
||||
endpoint?: string;
|
||||
@@ -39,7 +48,7 @@ export class QwenOAuthService {
|
||||
|
||||
constructor(config: QwenOAuthConfig = {}) {
|
||||
this.endpoint = config.endpoint || DEFAULT_QWEN_ENDPOINT;
|
||||
this.oauthBaseUrl = config.oauthBaseUrl || DEFAULT_OAUTH_BASE;
|
||||
this.oauthBaseUrl = config.oauthBaseUrl || getOAuthBaseUrl();
|
||||
this.apiKey = config.apiKey || process.env.QWEN_API_KEY || undefined;
|
||||
|
||||
if (config.accessToken) {
|
||||
@@ -104,7 +113,7 @@ export class QwenOAuthService {
|
||||
}
|
||||
|
||||
private hydrateTokens() {
|
||||
if (this.storageHydrated || typeof window === "undefined") {
|
||||
if (this.storageHydrated || typeof window === "undefined" || typeof window.localStorage === "undefined") {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -113,7 +122,8 @@ export class QwenOAuthService {
|
||||
if (stored) {
|
||||
this.token = JSON.parse(stored);
|
||||
}
|
||||
} catch {
|
||||
} catch (error) {
|
||||
console.warn("[QwenOAuth] Failed to read tokens from localStorage:", error);
|
||||
this.token = null;
|
||||
} finally {
|
||||
this.storageHydrated = true;
|
||||
@@ -126,14 +136,18 @@ export class QwenOAuthService {
|
||||
}
|
||||
|
||||
private persistToken(token: QwenOAuthToken | null) {
|
||||
if (typeof window === "undefined") {
|
||||
if (typeof window === "undefined" || typeof window.localStorage === "undefined") {
|
||||
return;
|
||||
}
|
||||
|
||||
if (token) {
|
||||
window.localStorage.setItem(TOKEN_STORAGE_KEY, JSON.stringify(token));
|
||||
} else {
|
||||
window.localStorage.removeItem(TOKEN_STORAGE_KEY);
|
||||
try {
|
||||
if (token) {
|
||||
window.localStorage.setItem(TOKEN_STORAGE_KEY, JSON.stringify(token));
|
||||
} else {
|
||||
window.localStorage.removeItem(TOKEN_STORAGE_KEY);
|
||||
}
|
||||
} catch (error) {
|
||||
console.warn("[QwenOAuth] Failed to persist tokens to localStorage:", error);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -227,17 +241,23 @@ export class QwenOAuthService {
|
||||
throw new Error("Qwen OAuth is only supported in the browser");
|
||||
}
|
||||
|
||||
const codeVerifier = this.generateCodeVerifier();
|
||||
const codeChallenge = await this.generateCodeChallenge(codeVerifier);
|
||||
const deviceAuth = await this.requestDeviceAuthorization(codeChallenge);
|
||||
|
||||
const popup = window.open(
|
||||
deviceAuth.verification_uri_complete,
|
||||
"",
|
||||
"qwen-oauth",
|
||||
"width=500,height=600,scrollbars=yes,resizable=yes"
|
||||
);
|
||||
|
||||
if (!popup) {
|
||||
const codeVerifier = this.generateCodeVerifier();
|
||||
const codeChallenge = await this.generateCodeChallenge(codeVerifier);
|
||||
const deviceAuth = await this.requestDeviceAuthorization(codeChallenge);
|
||||
|
||||
if (popup) {
|
||||
try {
|
||||
popup.location.href = deviceAuth.verification_uri_complete;
|
||||
} catch {
|
||||
// ignore cross-origin restrictions
|
||||
}
|
||||
} else {
|
||||
window.alert(
|
||||
`Open this URL to authenticate:\n${deviceAuth.verification_uri_complete}\n\nUser code: ${deviceAuth.user_code}`
|
||||
);
|
||||
|
||||
@@ -2,5 +2,11 @@
|
||||
"buildCommand": "npm run build",
|
||||
"outputDirectory": ".next",
|
||||
"framework": "nextjs",
|
||||
"devCommand": "npm run dev"
|
||||
"devCommand": "npm run dev",
|
||||
"env": {
|
||||
"NEXT_PUBLIC_SITE_URL": {
|
||||
"description": "The production URL of your app (e.g., https://your-app.vercel.app)",
|
||||
"value": "https://your-app.vercel.app"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user