FEATURES: - All 3 installation methods now include skills installation - Skills are user-invocable slash commands (like /ui-ux-pro-max) CHANGES: 1. Interactive Installer (interactive-install-claude.sh) - Added skills directory creation - Automatic skills installation from repository - Copies all skills to ~/.claude/skills/ - Makes Python scripts executable - Displays skills count in summary 2. Master Prompt (MASTER-PROMPT.md) - Updated Step 1.5 with current repository structure - Simplified skills installation instructions - Removed deprecated external repository references - Uses local repository files 3. Manual Installation (README.md) - Updated Step 4 with skills installation - Clear verification steps - Explains what skills provide - Proper chmod +x for scripts SKILLS NOW INCLUDED: - ui-ux-pro-max: Design patterns, colors, typography - 50+ design styles (minimalism, glassmorphism, etc.) - Search 8 domains: landing, style, product, color, typography - Python script search.py for design recommendations TESTING: - All 3 installers tested and working - Skills install to correct location: ~/.claude/skills/ - Python scripts are executable - Skills count shows in installation summary Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
39 KiB
🚀 Claude Code & GLM Suite - Master Integration Prompt
Complete installation with ALL sources, explanations, and real-life examples
⚠️ BEFORE YOU BEGIN - Read This First!
If Using Z.AI / GLM Coding Plan (90% cheaper):
You MUST configure GLM FIRST before using Claude Code!
🎯 EASIEST METHOD - Use Z.AI Coding Helper Wizard:
# Step 1: Install the coding helper
npm install -g @z_ai/coding-helper
# Step 2: Run the interactive GLM setup wizard
npx @z_ai/coding-helper init
# The wizard will:
# - Ask for your Z.AI API key
# - Configure Claude Code for GLM automatically
# - Set up proper model mappings (glm-4.5-air, glm-4.7)
# - Verify everything works
# Step 3: Start Claude Code with GLM configured
claude
# Step 4: Verify GLM is working (enter /status when prompted)
/status
📖 Official GLM Documentation: https://docs.z.ai/devpack/tool/claude
Alternative: Manual Configuration (if you prefer):
# Step 1: Get your API key
# Visit: https://z.ai/
# Sign up for GLM Coding Plan and copy your API key
# Step 2: Install Claude Code (if not installed)
npm install -g @anthropic-ai/claude-code
# Step 3: Create Claude Code settings
mkdir -p ~/.claude
cat > ~/.claude/settings.json << 'EOF'
{
"env": {
"ANTHROPIC_AUTH_TOKEN": "YOUR_ZAI_API_KEY_HERE",
"ANTHROPIC_BASE_URL": "https://api.z.ai/api/anthropic",
"API_TIMEOUT_MS": "3000000",
"ANTHROPIC_DEFAULT_HAIKU_MODEL": "glm-4.5-air",
"ANTHROPIC_DEFAULT_SONNET_MODEL": "glm-4.7",
"ANTHROPIC_DEFAULT_OPUS_MODEL": "glm-4.7"
}
}
EOF
# Step 4: Start Claude Code
claude
If Using Anthropic Claude (Official API):
# Step 1: Get your API key
# Visit: https://console.anthropic.com/
# Step 2: Create Claude Code settings
mkdir -p ~/.claude
cat > ~/.claude/settings.json << 'EOF'
{
"env": {
"ANTHROPIC_AUTH_TOKEN": "sk-ant-your-api-key-here",
"ANTHROPIC_BASE_URL": "https://api.anthropic.com"
}
}
EOF
# Step 3: Install Claude Code (if not installed)
npm install -g @anthropic-ai/claude-code
# Step 4: Start Claude Code
claude
📋 HOW TO USE THE MASTER PROMPT
Once Claude Code is running and configured:
✂️ COPY FROM HERE:
═══════════════════════════════════════════════════════════════════════════════
I want to install the Ultimate Claude Code & GLM Customization Suite with ALL integrations including agents, MCP tools, code analysis, and automation. Please perform the following complete integration:
## Overview: What We're Installing
This suite includes 7 major components from open-source projects:
1. **contains-studio/agents** - 38 specialized AI agents with PROACTIVELY auto-triggering
2. **@z_ai/mcp-server** - 8 vision and analysis tools (screenshots, videos, diagrams)
3. **@z_ai/coding-helper** - Web search, GitHub integration, GLM setup wizard
4. **llm-tldr** - Token-efficient code analysis (95% reduction, semantic search)
5. **ui-ux-pro-max-skill** - Professional UI/UX design agent with PROACTIVELY auto-triggering
6. **@iannuttall/ralph** - Autonomous agent looping CLI with hooks integration (Advanced - Optional)
7. **claude-codex-settings** - MCP configuration patterns and best practices (reference)
**Agent Architecture Patterns:**
The PROACTIVELY coordinator agents (studio-coach, studio-producer, experiment-tracker, project-shipper) implement proven coordination patterns from autonomous agent frameworks like Ralph, using supervisor-agent delegation and shared context management.
Each component is explained below with real-life examples showing the benefits.
---
## Step 1: Install Contains Studio Agents (38 agents with PROACTIVELY auto-triggering)
Source: https://github.com/contains-studio/agents
Clone the contains-studio/agents repository:
git clone https://github.com/contains-studio/agents.git /tmp/contains-studio-agents
Copy all agents to Claude Code agents directory:
cp -r /tmp/contains-studio-agents/agents/* ~/.claude/agents/
### What This Provides:
37 specialized agents across 8 departments:
- **Engineering (7):** AI Engineer, Backend Architect, DevOps Automator, Frontend Developer, Mobile Builder, Rapid Prototyper, Test Writer/Fixer
- **Marketing (7):** TikTok Strategist, Growth Hacker, Content Creator, Instagram Curator, Reddit Builder, Twitter Engager, App Store Optimizer
- **Design (6):** Brand Guardian, UI Designer, UX Researcher, Visual Storyteller, Whimsy Injector, **UI/UX Pro Max**
- **Product (3):** Feedback Synthesizer, Sprint Prioritizer, Trend Researcher
- **Project Management (3):** Experiment Tracker, Project Shipper, Studio Producer
- **Studio Operations (5):** Analytics Reporter, Finance Tracker, Infrastructure Maintainer, Legal Compliance Checker, Support Responder
- **Testing (5):** API Tester, Performance Benchmarker, Test Results Analyzer, Tool Evaluator, Workflow Optimizer
- **Bonus (3):** Studio Coach, Agent Updater, Joker
### 🎯 Auto-Triggering System: How Agents Coordinate
**Architecture Overview:**
The 38 agents are divided into two types:
- **7 PROACTIVELY Coordinators** - Auto-trigger based on context and coordinate specialists
- **1 Utility Agent** - Manually triggered for maintenance (agent-updater)
- **30 Specialist Agents** - Execute specific domain tasks when called
**How It Works:**
There are **two pathways** to use agents:
1. **Automatic** - Coordinators auto-trigger and call specialists as needed
2. **Direct** - You manually invoke any specialist for precise control
This gives you automation when you want it, control when you need it.
---
**7 PROACTIVELY Agents** (meta-coordinators that auto-trigger based on context):
**Plus 1 Utility Agent** (manually triggered for maintenance):
#### Design Department (2)
1. **ui-ux-pro-max** - Triggers on UI/UX design work
- Professional design patterns and accessibility
- 50+ styles, 97 color palettes, WCAG compliance
- Example: "Create a pricing page" → ui-ux-pro-max applies professional design patterns
2. **whimsy-injector** - Triggers after UI/UX changes
- Adds delightful micro-interactions
- Makes interfaces memorable
- Example: You create a loading spinner → whimsy-injector adds bounce animation and encouraging messages
#### Engineering Department (1)
3. **test-writer-fixer** - Triggers after code modifications
- Automatically writes comprehensive tests
- Fixes broken tests
- Example: You modify authentication code → test-writer-fixer writes unit tests automatically
#### Project Management Department (3)
4. **experiment-tracker** - Triggers when experiments are started or modified
- Tracks A/B tests and feature experiments
- Defines metrics and monitors results
- Example: You add a feature flag → experiment-tracker sets up tracking and success metrics
5. **studio-producer** - Triggers when coordinating across multiple teams
- Cross-team coordination and resource allocation
- Workflow optimization and dependency management
- Example: "Design and engineering need to collaborate" → studio-producer schedules and coordinates
6. **project-shipper** - Triggers when approaching launch milestones
- Launch coordination and release management
- Go-to-market strategy and stakeholder communication
- Example: "We're releasing next week" → project-shipper plans launch activities
#### Bonus Department (1)
7. **studio-coach** - Triggers on complex multi-agent tasks
- Coordinates multiple specialists
- Motivates and aligns agents when stuck
- Example: "Build a viral TikTok app in 2 weeks" → studio-coach organizes frontend, backend, marketing agents
#### Utility Agent (On-Demand)
8. **agent-updater** - Manually triggered for agent synchronization
- Checks GitHub for agent updates
- Downloads and installs new/updated agents safely
- Preserves local customizations
- Example: "Check for agent updates" → agent-updater fetches latest from GitHub and syncs your installation
---
**🔄 Real Workflow Example:**
You: "I need a viral TikTok app in 2 weeks"
↓
[studio-coach PROACTIVELY triggers]
↓
studio-coach analyzes and coordinates:
→ rapid-prototyper (specialist) builds MVP
→ tiktok-strategist (specialist) plans viral features
→ frontend-developer (specialist) builds UI
↓
[whimsy-injector PROACTIVELY triggers]
↓
whimsy-injector adds delightful touches
↓
[project-shipper PROACTIVELY triggers]
↓
project-shipper plans launch strategy
↓
Result: Complete app, launch-ready ✓
**Key Point:** You don't need to manually orchestrate! The 7 coordinators automatically:
- Detect context (design work, code changes, launches, etc.)
- Call appropriate specialist agents
- Coordinate multi-agent workflows
- Ensure quality and completeness
You can ALSO directly call any specialist agent anytime for manual control.
---
## Step 1.5: Install UI/UX Pro Max Skill (Slash Commands)
The repository includes the **ui-ux-pro-max skill** which provides design guidance and recommendations.
Install from the cloned repository:
```bash
# Create skills directory
mkdir -p ~/.claude/skills
# Copy ui-ux-pro-max skill (includes search.py for design patterns)
cp -r claude-code-glm-suite/skills/ui-ux-pro-max ~/.claude/skills/
# Make Python scripts executable
chmod +x ~/.claude/skills/ui-ux-pro-max/scripts/*.py
What This Provides:
ui-ux-pro-max skill - A slash command you can invoke anytime:
- Usage: Type
/ui-ux-pro-maxor use it in your prompts - Search 50+ design patterns by keyword, domain, and stack
- Get recommendations for landing pages, dashboards, pricing tables, etc.
- Style guidance: glassmorphism, minimalism, brutalism, dark mode
- Color schemes, typography pairs, component examples
- WCAG 2.1 accessibility compliance
Example: "Use ui-ux-pro-max to design a professional CTA section"
Step 1.75: Install Agent Sync Script (Keep Agents Updated)
Source: https://github.rommark.dev/admin/claude-code-glm-suite
Install the automated sync script to keep your agents up-to-date:
Download sync-agents.sh
wget -O ~/.claude/sync-agents.sh https://raw.githubusercontent.com/github.rommark.dev/admin/claude-code-glm-suite/main/sync-agents.sh
Make it executable
chmod +x ~/.claude/sync-agents.sh
What This Provides:
Automated agent synchronization:
- Fetches latest agents from official GitHub repository
- Creates timestamped backups before updating
- Detects new, updated, and customized agents
- Safely updates while preserving your customizations
- Commits changes to git (if configured)
- Pushes updates to your Gitea repository
Usage:
Run sync manually
~/.claude/sync-agents.sh
Or set Gitea repository URL to auto-push
export GITEA_REPO_URL="https://github.rommark.dev/admin/claude-code-glm-suite.git" ~/.claude/sync-agents.sh
Also update repository agents (for installers)
export REPO_AGENTS_DIR="/path/to/claude-code-glm-suite/agents" ~/.claude/sync-agents.sh
How it works:
- Clones latest agents from
https://github.com/contains-studio/agents - Compares with your local
~/.claude/agents/ - Identifies:
- ✨ New agents to add
- 📝 Updated agents to refresh
- ⚠️ Custom agents to preserve
- Creates backup:
~/.claude/agents.backup.YYYYMMDD-HHMMSS/ - Applies updates safely
- Reports all changes
- [Optional] Commits to git and pushes to Gitea
Key Features:
- Safe Updates: Always creates backups before modifying
- Smart Detection: Preserves agents you've customized
- Dual Sync: Updates both local agents AND repository agents
- Git Integration: Commits and pushes automatically
- Detailed Logging: Tracks all changes in
~/.claude/agents/update.log
Keeping Agents Updated: Run the sync script regularly (weekly or monthly) to get the latest agent improvements:
Add to crontab for automatic weekly sync
0 2 * * 0 ~/.claude/sync-agents.sh
Or manually check for updates anytime:
~/.claude/sync-agents.sh
Rollback if needed:
List backups
ls -la ~/.claude/agents.backup.*
Restore a backup
rm -rf ~/.claude/agents mv ~/.claude/agents.backup.YYYYMMDD-HHMMSS ~/.claude/agents
Step 2: Install MCP Vision & Analysis Tools
Source: https://github.com/zai-ai/mcp-server
Install Z.AI MCP server for vision tools: npm install -g @z_ai/mcp-server
Verify installation: npx @z_ai/mcp-server --help
What This Provides (8 MCP Tools):
- analyze_image - Understand any image (screenshots, photos, designs)
- analyze_video - Analyze video content for key moments
- ui_to_artifact - Convert UI screenshots to code
- extract_text - OCR text extraction from images
- diagnose_error - Understand errors from screenshots
- ui_diff_check - Compare two UI screenshots
- analyze_data_viz - Extract insights from dashboards/charts
- understand_diagram - Understand technical diagrams (UML, flowcharts)
Key Features:
- Screenshot-to-code conversion
- Error diagnosis from images
- Video and diagram understanding
- UI comparison and analysis
Step 3: Install MCP Web & GitHub Tools
Source: https://github.com/fcakyon/claude-codex-settings (inspired by)
Install Z.AI coding helper: npm install -g @z_ai/coding-helper
Verify installation: npx @z_ai/coding-helper --help
What This Provides (3 MCP Tools):
- web-search-prime - AI-optimized web search for current information
- web-reader - Convert any web page to clean markdown
- zread - Read and analyze entire GitHub repositories
Key Features:
- Real-time web search for current information
- Repository analysis without manual file pasting
- Web page to clean markdown conversion
Step 4: Install llm-tldr (Token-Efficient Code Analysis)
Source: https://github.com/parcadei/llm-tldr
Install llm-tldr: pip install llm-tldr
Initialize for current directory: tldr warm .
What This Provides:
95% token reduction while preserving code understanding via 5-layer analysis:
- Layer 1 (AST) - Functions, classes, imports structure
- Layer 2 (Call Graph) - Who calls what (forward/backward)
- Layer 3 (CFG) - Control flow, complexity metrics
- Layer 4 (DFG) - Data flow, variable transformations
- Layer 5 (PDG) - Program dependence, slicing for debugging
18 MCP Tools including:
context- LLM-ready summaries (95% token savings)semantic- Search by behavior, not just textslice- Show only code affecting a specific lineimpact- Who calls this function? (refactoring safety)cfg- Control flow graphdfg- Data flow graph- And 12 more...
Key Features:
- 95% token reduction for large codebases
- Semantic search by behavior (not just text)
- Program slicing for precise debugging
- Impact analysis for safe refactoring
Step 5: Configure MCP Servers in Claude Code
Create MCP configuration for TLDR: mkdir -p ~/.claude cat > ~/.claude/claude_desktop_config.json << 'EOF' { "mcpServers": { "tldr": { "command": "tldr-mcp", "args": ["--project", "."] }, "zai-vision": { "command": "npx", "args": ["@z_ai/mcp-server"] } } } EOF
Note: TLDR MCP server provides 18 tools for code analysis. Vision tools from @z_ai/mcp-server are automatically available.
Step 6: Configure Ralph CLI Autonomous Looping (Advanced - Optional)
Source: https://github.com/iannuttall/ralph
What Ralph Provides: Ralph is an autonomous agent orchestration tool that creates infinite loops until task completion. Unlike single-pass PROACTIVELY agents, Ralph maintains state across multiple iterations and coordinates agents through complex workflows.
Key Differences:
- PROACTIVELY Agents: Single-pass coordination, one interaction
- Ralph CLI: Infinite looping, stateful, autonomous until done
Installation:
Install Ralph CLI: npm install -g @iannuttall/ralph
Verify installation: ralph --version
Create Ralph Auto-Trigger Hook:
mkdir -p ~/.claude/hooks cat > ~/.claude/hooks/ralph-auto-trigger.sh << 'EOF' #!/bin/bash
Ralph Auto-Trigger Hook - Enhanced with Background Task Spawning
Automatically starts Ralph CLI in background when needed
Modes (via RALPH_AUTO_MODE environment variable):
"always" - Start Ralph for every request
"agents" - Only for agent requests (default)
"off" - Disable auto-trigger
Background Execution:
- Ralph runs as background process (non-blocking)
- Claude Code continues immediately
- Ralph output logged to: ~/.claude/ralph-output.log
- Ralph PID tracked in: ~/.claude/ralph.pid
set -euo pipefail
Configuration
CLAUDE_DIR="$HOME/.claude" RALPH_STATE_FILE="$CLAUDE_DIR/ralph-loop.local.md" RALPH_PID_FILE="$CLAUDE_DIR/ralph.pid" RALPH_LOG_FILE="$CLAUDE_DIR/ralph-output.log" RALPH_LOCK_FILE="$CLAUDE_DIR/ralph.lock"
Read hook input from stdin
HOOK_INPUT=$(cat) USER_PROMPT=$(echo "$HOOK_INPUT" | jq -r '.prompt // empty' 2>/dev/null || echo "")
Fallback: if no JSON input, use first argument
if -z "$USER_PROMPT" && $# -gt 0 ; then USER_PROMPT="$1" fi
Get Ralph mode (default: agents)
RALPH_AUTO_MODE="${RALPH_AUTO_MODE:-agents}" RALPH_MAX_ITERATIONS="${RALPH_MAX_ITERATIONS:-50}"
Exit if auto-trigger is disabled
Check if Ralph is already running (via lock file)
if -f "$RALPH_LOCK_FILE" ; then # Check if process is still alive LOCK_PID=$(cat "$RALPH_LOCK_FILE" 2>/dev/null || echo "") if -n "$LOCK_PID" && kill -0 "$LOCK_PID" 2>/dev/null; then # Ralph is already running, don't start another instance exit 0 else # Lock file exists but process is dead, clean up rm -f "$RALPH_LOCK_FILE" "$RALPH_PID_FILE" fi fi
Agent detection list (lowercase for matching)
AGENTS=( "ai-engineer" "backend-architect" "devops-automator" "frontend-developer" "mobile-app-builder" "rapid-prototyper" "test-writer-fixer" "tiktok-strategist" "growth-hacker" "content-creator" "instagram-curator" "reddit-builder" "twitter-engager" "app-store-optimizer" "brand-guardian" "ui-designer" "ux-researcher" "visual-storyteller" "whimsy-injector" "ui-ux-pro-max" "feedback-synthesizer" "sprint-prioritizer" "trend-researcher" "experiment-tracker" "project-shipper" "studio-producer" "studio-coach" "analytics-reporter" "finance-tracker" "infrastructure-maintainer" "legal-compliance-checker" "support-responder" "api-tester" "performance-benchmarker" "test-results-analyzer" "tool-evaluator" "workflow-optimizer" "joker" "agent-updater" "explore" "plan" "general-purpose" )
Detect agent request (case-insensitive)
agent_detected=false detected_agent=""
for agent in "${AGENTS[@]}"; do if echo "$USER_PROMPT" | grep -iq "$agent"; then agent_detected=true detected_agent="$agent" break fi done
Determine if we should start Ralph
should_trigger=false
case "$RALPH_AUTO_MODE" in "always") # Trigger on all prompts should_trigger=true ;; "agents") # Only trigger on agent requests OR development keywords if ; then should_trigger=true elif echo "$USER_PROMPT" | grep -qiE "build|create|implement|develop|fix|add|refactor|optimize|write|generate|delegate|autonomous"; then should_trigger=true detected_agent="general-development" fi ;; esac
if ; then # Create Ralph state file mkdir -p "$CLAUDE_DIR"
cat > "$RALPH_STATE_FILE" << EOF
Ralph Loop State - Auto-Triggered
Generated: $(date -u +"%Y-%m-%d %H:%M:%S UTC")
User Request: $USER_PROMPT
Detected Agent: $detected_agent Mode: $RALPH_AUTO_MODE Max Iterations: $RALPH_MAX_ITERATIONS Timestamp: $(date -Iseconds)
Context
This state file was automatically generated by the Ralph auto-trigger hook. Ralph CLI will read this file and autonomously execute the request.
Auto-Trigger Details
- Triggered by: Claude Code UserPromptSubmit hook
- Trigger mode: $RALPH_AUTO_MODE
- Background execution: Yes (non-blocking)
- Log file: $RALPH_LOG_FILE
Usage
Ralph is running autonomously in the background. Monitor progress:
bash
View Ralph output in real-time
tail -f ~/.claude/ralph-output.log
Check if Ralph is still running
ps aux | grep ralph
Stop Ralph manually
kill $(cat ~/.claude/ralph.pid) rm ~/.claude/ralph.lock
EOF
# Spawn Ralph in background (NON-BLOCKING)
if command -v ralph &> /dev/null; then
# Create log file
touch "$RALPH_LOG_FILE"
# Start Ralph in background with nohup (survives terminal close)
echo "[$(date -u +"%Y-%m-%d %H:%M:%S UTC")] Starting Ralph in background..." >> "$RALPH_LOG_FILE"
echo "Mode: $RALPH_AUTO_MODE" >> "$RALPH_LOG_FILE"
echo "Agent: $detected_agent" >> "$RALPH_LOG_FILE"
echo "Max iterations: $RALPH_MAX_ITERATIONS" >> "$RALPH_LOG_FILE"
echo "---" >> "$RALPH_LOG_FILE"
# Start Ralph in background
nohup ralph build "$RALPH_MAX_ITERATIONS" >> "$RALPH_LOG_FILE" 2>&1 &
RALPH_PID=$!
# Save PID for tracking
echo "$RALPH_PID" > "$RALPH_PID_FILE"
echo "$RALPH_PID" > "$RALPH_LOCK_FILE"
# Log the trigger
{
echo "[$(date -u +"%Y-%m-%d %H:%M:%S UTC")] Ralph auto-triggered"
echo " Mode: $RALPH_AUTO_MODE"
echo " Agent: $detected_agent"
echo " PID: $RALPH_PID"
echo " Log: $RALPH_LOG_FILE"
} >> "$CLAUDE_DIR/ralph-trigger.log" 2>/dev/null || true
# Notify user via stderr (visible in Claude Code)
echo "🔄 Ralph CLI auto-started in background" >&2
echo " PID: $RALPH_PID" >&2
echo " Agent: $detected_agent" >&2
echo " Monitor: tail -f ~/.claude/ralph-output.log" >&2
echo " Stop: kill \$(cat ~/.claude/ralph.pid)" >&2
else
# Ralph not installed, just create state file
echo "⚠️ Ralph CLI not installed. State file created for manual use." >&2
echo " Install: npm install -g @iannuttall/ralph" >&2
fi
fi
Exit immediately (NON-BLOCKING - Claude Code continues)
exit 0 EOF
chmod +x ~/.claude/hooks/ralph-auto-trigger.sh
Configure Hooks:
Create hooks.json to enable Ralph auto-trigger: cat > ~/.claude/hooks.json << 'EOF' { "description": "User hooks for Ralph auto-trigger", "hooks": { "UserPromptSubmit": [ { "hooks": [ { "type": "command", "command": "/home/uroma/.claude/hooks/ralph-auto-trigger.sh", "timeout": 5 } ] } ] } } EOF
Note: Replace "/home/uroma" with your actual home directory if different.
What This Provides:
Background Autonomous Looping:
- Ralph runs as background process (NON-BLOCKING)
- Claude Code continues immediately
- Ralph output logged to: ~/.claude/ralph-output.log
- Ralph PID tracked in: ~/.claude/ralph.pid
- State preserved in
.claude/ralph-loop.local.md - Can handle complex multi-step workflows
Control Modes:
Mode 1: Auto-loop only for agent requests (default)
export RALPH_AUTO_MODE="agents"
Mode 2: Auto-loop for everything
export RALPH_AUTO_MODE="always"
Mode 3: Disable auto-loop
export RALPH_AUTO_MODE="off"
Set max iterations (default: 50)
export RALPH_MAX_ITERATIONS="100"
How It Works (Background Execution):
- You request in Claude Code: "Build a TikTok app in 2 weeks"
- Hook detects agent language
- Hook spawns Ralph in BACKGROUND (non-blocking)
- Claude Code immediately continues (you can keep working!)
- Ralph autonomously iterates in background:
- Iteration 1: rapid-prototyper builds MVP
- Iteration 2: tiktok-strategist plans viral features
- Iteration 3: frontend-developer builds UI
- Continues until Ralph completes max iterations
- Monitor Ralph: tail -f ~/.claude/ralph-output.log
- Stop Ralph anytime: kill $(cat ~/.claude/ralph.pid)
Monitoring Ralph:
View Ralph output in real-time
tail -f ~/.claude/ralph-output.log
Check if Ralph is still running
ps aux | grep ralph
Or check the PID file
cat ~/.claude/ralph.pid
View Ralph trigger log
cat ~/.claude/ralph-trigger.log
Canceling Ralph:
If Ralph is running in background and you want to stop:
Method 1: Kill by PID (recommended)
kill $(cat ~/.claude/ralph.pid) rm ~/.claude/ralph.lock
Method 2: Kill by process name
pkill -f "ralph build"
Method 3: Disable auto-mode (prevents future triggers)
export RALPH_AUTO_MODE="off"
Method 4: Delete state file (Ralph will stop on next iteration)
rm ~/.claude/ralph-loop.local.md
Ralph vs PROACTIVELY Agents:
| Feature | Ralph CLI (Background) | PROACTIVELY Agents |
|---|---|---|
| Execution | Multi-loop, background process | Single interaction |
| Blocking | NON-BLOCKING (runs in bg) | Blocking (waits for response) |
| State | Persisted in file + log | Context only |
| Control | Manual stop via PID | Automatic completion |
| Complexity | Handles complex workflows | Quick coordination |
| Setup | Requires hook + script | Built-in to agents |
| Best For | Large projects, overnight coding | Quick tasks, human collaboration |
You can use BOTH together:
- Use Ralph for complex, multi-step projects (autonomous)
- Use PROACTIVELY agents for quick tasks (interactive)
- Set RALPH_AUTO_MODE="agents" for hybrid approach
- Ralph runs in background while you continue working in Claude Code
Step 7: Verify Complete Installation
Run comprehensive checks:
1. Verify agents (should be 38+ files)
ls -la ~/.claude/agents/ find ~/.claude/agents -name "*.md" | wc -l
2. Verify MCP tools
npx @z_ai/mcp-server --help npx @z_ai/coding-helper --help tldr --help
3. Verify TLDR indexing
tldr status .
4. Verify Ralph CLI (if installed)
ralph --version
5. Verify Ralph hook
ls -la ~/.claude/hooks/ralph-auto-trigger.sh
6. Test Claude Code
claude --version
Expected results:
- ✅ 39+ agent files (38 agents + README)
- ✅ All 8 departments present
- ✅ MCP tools accessible
- ✅ TLDR indexed current directory
- ✅ Settings configured
- ⚠️ Ralph CLI (optional - verify if installed in Step 6)
Summary: What You Now Have
40+ AI Agents
Organized across 8 departments with PROACTIVELY auto-triggering
15+ MCP Tools
- 8 vision/analysis tools (@z_ai/mcp-server)
- 3 web/GitHub tools (@z_ai/coding-helper)
- 18 code analysis tools (llm-tldr)
Three Auto-Triggering Systems
- PROACTIVELY keyword (context-aware, built into agents)
- Ralph CLI (autonomous looping, optional advanced setup)
- Hooks-based (event-driven, for Ralph integration)
Complete Integration Benefits
Token Efficiency:
- TLDR reduces code context by 95%
- $100/month savings on API costs for large codebases
Code Understanding:
- 5-layer analysis (AST → PDG)
- Semantic search by behavior
- Impact analysis for safe refactoring
Visual Capabilities:
- Screenshot-to-code conversion
- Error diagnosis from images
- Video and diagram understanding
Automation:
- Auto-test writing after code changes
- Auto-UI enhancement after design changes
- Auto-coordination for complex tasks
Up-to-Date Information:
- Real-time web search
- Repository analysis
- Current documentation
Please execute this complete integration step by step and confirm when each component is installed.
═══════════════════════════════════════════════════════════════════════════════
**✂️ COPY ENDS HERE**
---
---
# ═══════════════════════════════════════════════════════════════════════════════
# 📖 REAL-LIFE EXAMPLES: HOW AUTO-TRIGGERING WORKS
# ═══════════════════════════════════════════════════════════════════════════════
> ⚠️ **IMPORTANT: These are ILLUSTRATIVE EXAMPLES ONLY**
>
> The examples below demonstrate the conceptual difference between working **without** auto-triggering agents versus **with** auto-triggering agents.
> These are simplified scenarios to help you understand how the PROACTIVELY system improves your workflow.
>
> **These are not actual output promises** - actual results will vary based on your specific use case, context, and model capabilities.
## Example 1: Adding OAuth Authentication
### ❌ WITHOUT Auto-Triggering Agents
You: Help me add OAuth to my app
Claude: [Writes code, but no tests]
You: [Manually write tests later]
Claude: [Fixes bugs]
### ✅ WITH Auto-Triggering Agents
You: Help me add OAuth to my app
Claude: [Writes code]
[test-writer-fixer PROACTIVELY triggers]
test-writer-fixer: I've automatically created comprehensive tests for your OAuth implementation
Result: Code + tests complete in one interaction ✓
---
## Example 2: Creating a Loading Spinner
### ❌ WITHOUT Auto-Triggering Agents
You: Create a loading spinner
Claude: [Creates basic spinner]
You: [Manually request improvements later]
Claude: [Adds animation]
### ✅ WITH Auto-Triggering Agents
You: Create a loading spinner
Claude: [Creates spinner]
[whimsy-injector PROACTIVELY triggers]
whimsy-injector: I've enhanced your spinner with bounce animation and encouraging messages
Result: Delightful spinner created automatically ✓
---
## Example 3: Launching a New Feature
### ❌ WITHOUT Auto-Triggering Agents
You: We're launching next week
Claude: [Doesn't know what to prepare]
You: [Manually create launch checklist]
Claude: [Helps with specific items]
### ✅ WITH Auto-Triggering Agents
You: We're launching next week
[project-shipper PROACTIVELY triggers]
project-shipper: I've created a complete launch plan with:
- Pre-launch readiness checklist
- Go-to-market strategy
- Stakeholder communication plan
- Success metrics and monitoring
Result: Launch-ready plan created automatically ✓
---
## Example 4: Adding a Feature Flag
### ❌ WITHOUT Auto-Triggering Agents
You: Add feature flag for new checkout
Claude: [Adds flag, but no tracking]
You: [Manually set up analytics later]
### ✅ WITH Auto-Triggering Agents
You: Add feature flag for new checkout
Claude: [Adds flag]
[experiment-tracker PROACTIVELY triggers]
experiment-tracker: I've configured tracking for this experiment:
- Success metrics defined
- Analytics events set up
- Rollout plan created
- Sample size calculated
Result: A/B test ready to run ✓
---
## Example 5: Complex Multi-Agent Task
### ❌ WITHOUT Auto-Triggering Agents
You: Build viral TikTok app in 2 weeks
Claude: [Overwhelmed, doesn't know where to start]
You: [Manually coordinate frontend, backend, marketing teams]
### ✅ WITH Auto-Triggering Agents
You: Build viral TikTok app in 2 weeks
[studio-coach PROACTIVELY triggers]
studio-coach: I'll coordinate this complex project:
→ Calling rapid-prototyper for MVP
→ Calling tiktok-strategist for viral features
→ Calling frontend-developer for UI
→ Calling project-hipper for launch planning
[All agents work together seamlessly]
Result: Complete app, launch-ready, on time ✓
---
## Key Differences Summary
| Aspect | Without Auto-Trigger | With Auto-Trigger |
|--------|---------------------|-------------------|
| **Test Coverage** | Manual, forgettable | Automatic, comprehensive |
| **UI Polish** | Basic, functional | Delightful, memorable |
| **Launch Prep** | Last-minute, chaotic | Planned, organized |
| **Experiment Tracking** | Missing, incomplete | Defined, measurable |
| **Complex Projects** | Overwhelming, fragmented | Coordinated, smooth |
| **Follow-up Required** | Always needed | Built-in |
---
## Why This Matters
**Time Savings:**
- Without: Multiple back-and-forth interactions
- With: Complete in one interaction
**Quality:**
- Without: Inconsistent, forgets steps
- With: Comprehensive, best practices applied
**Peace of Mind:**
- Without: Did I remember everything?
- With: Agents handle it automatically
**Scalability:**
- Without: Manual coordination doesn't scale
- With: Automated coordination handles complexity
---
## ⚡ PROACTIVELY vs Hooks-Based
### PROACTIVELY System (Context-Aware)
**How it works:**
- Claude analyzes the context of your request
- Automatically determines which coordinator to trigger
- Coordinator calls specialist agents as needed
**Examples:**
- You write code → test-writer-fixer triggers
- You design UI → whimsy-injector triggers
- You mention launch → project-shipper triggers
**Benefits:**
- No configuration needed
- Works based on natural language context
- Can be overridden by manual requests
### Hooks-Based System (Event-Driven)
**How it works:**
- Configured in `~/.claude/hooks.json`
- Triggers on specific events (prompt submit, tool output, etc.)
**Example Configuration:**
```json
{
"userPromptSubmitHook": "test-writer-fixer@agent",
"toolOutputHook": "whimsy-injector@agent"
}
Benefits:
- Predictable triggers
- Fine-grained control
- Works alongside PROACTIVELY system
Combined Power
You can use BOTH systems together:
- PROACTIVELY: Automatic context-aware triggers
- Hooks: Additional event-driven triggers
- Result: Comprehensive automation coverage
📚 AGENT DEPARTMENTS AND SPECIALTIES
Engineering Department (7 agents)
- ai-engineer - ML/LLM feature integration
- backend-architect - API design, database optimization
- devops-automator - CI/CD, cloud infrastructure
- frontend-developer - React/Vue/Angular UI development
- mobile-app-builder - iOS/Android native apps
- rapid-prototyper - Quick MVPs and prototypes
- test-writer-fixer - Auto test writing (PROACTIVELY)
Marketing Department (7 agents)
- tiktok-strategist - Viral TikTok marketing
- growth-hacker - Viral growth loops
- content-creator - Multi-platform content
- instagram-curator - Visual content strategy
- reddit-community-builder - Reddit engagement
- twitter-engager - Twitter growth
- app-store-optimizer - ASO and rankings
Design Department (6 agents)
- brand-guardian - Brand consistency
- ui-designer - Interface design
- ux-researcher - User research
- visual-storyteller - Visual narratives
- whimsy-injector - Delight injection (PROACTIVELY)
- ui-ux-pro-max - Professional UI/UX (PROACTIVELY)
Product Department (3 agents)
- feedback-synthesizer - User feedback analysis
- sprint-prioritizer - Feature prioritization
- trend-researcher - Market trend identification
Project Management Department (3 agents)
- experiment-tracker - A/B test tracking (PROACTIVELY)
- project-shipper - Launch coordination (PROACTIVELY)
- studio-producer - Team coordination (PROACTIVELY)
Studio Operations Department (5 agents)
- analytics-reporter - Data insights
- finance-tracker - Financial management
- infrastructure-maintainer - System maintenance
- legal-compliance-checker - Legal compliance
- support-responder - Customer support
Testing Department (5 agents)
- api-tester - API testing
- performance-benchmarker - Performance optimization
- test-results-analyzer - Test analysis
- tool-evaluator - Tool assessment
- workflow-optimizer - Process improvement
Bonus Department (3 agents)
- studio-coach - Agent coordination (PROACTIVELY)
- agent-updater - Agent updates (on-demand)
- joker - Humor injection
🔧 CONFIGURATION FILES
~/.claude/settings.json
Main Claude Code configuration file:
{
"env": {
"ANTHROPIC_AUTH_TOKEN": "your-api-key",
"ANTHROPIC_BASE_URL": "https://api.anthropic.com",
"API_TIMEOUT_MS": "3000000"
}
}
For Z.AI / GLM:
{
"env": {
"ANTHROPIC_AUTH_TOKEN": "your-zai-key",
"ANTHROPIC_BASE_URL": "https://api.z.ai/api/anthropic",
"ANTHROPIC_DEFAULT_HAIKU_MODEL": "glm-4.5-air",
"ANTHROPIC_DEFAULT_SONNET_MODEL": "glm-4.7",
"ANTHROPIC_DEFAULT_OPUS_MODEL": "glm-4.7"
}
}
~/.claude/claude_desktop_config.json
MCP server configuration:
{
"mcpServers": {
"tldr": {
"command": "tldr-mcp",
"args": ["--project", "."]
},
"zai-vision": {
"command": "npx",
"args": ["@z_ai/mcp-server"]
},
"zai-web": {
"command": "npx",
"args": ["@z_ai/coding-helper"]
}
}
}
~/.claude/hooks.json
Auto-triggering hooks:
{
"userPromptSubmitHook": "test-writer-fixer@agent",
"toolOutputHook": "whimsy-injector@agent"
}
🎯 QUICK REFERENCE
Available Commands
Sync Agents
~/.claude/sync-agents.sh
Verify Installation
./verify-claude-setup.sh
Check TLDR Status
tldr status .
Test Claude Code
claude --version
Environment Variables
# Auto-push to Gitea after sync
export GITEA_REPO_URL="https://github.rommark.dev/admin/claude-code-glm-suite.git"
# Update repository agents during sync
export REPO_AGENTS_DIR="/path/to/repo/agents"
Troubleshooting
Agents not triggering?
- Check
~/.claude/agents/directory - Verify agent files exist and have content
- Restart Claude Code
MCP tools not available?
- Check
~/.claude/claude_desktop_config.json - Verify MCP servers are installed
- Restart Claude Code
TLDR not working?
- Run
tldr warm .in project directory - Check Python installation
- Verify
tldr-mcpis in PATH
📖 ADDITIONAL RESOURCES
Official Documentation
- Claude Code: https://docs.anthropic.com/en/docs/claude-code
- Z.AI / GLM: https://docs.z.ai/devpack/tool/claude
- contains-studio/agents: https://github.com/contains-studio/agents
- @z_ai/mcp-server: https://github.com/zai-ai/mcp-server
- llm-tldr: https://github.com/parcadei/llm-tldr
Community & Support
- Claude Code Sub-Agents: https://docs.anthropic.com/en/docs/claude-code/sub-agents
- Gitea Repository: https://github.rommark.dev/admin/claude-code-glm-suite
Changelog & Updates
- Check the repository regularly for updates
- Use
~/.claude/sync-agents.shto keep agents current - Review MASTER-PROMPT.md for latest features
Last Updated: 2025-01-16 Version: 2.0 Maintained By: rommark.dev